首页> 外文期刊>IEEE Transactions on Information Theory >On Sparse Linear Regression in the Local Differential Privacy Model
【24h】

On Sparse Linear Regression in the Local Differential Privacy Model

机译:在局部差分隐私模型中稀疏线性回归

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the sparse linear regression problem under the Local Differential Privacy (LDP) model. We first show that polynomial dependency on the dimensionality $p$ of the space is unavoidable for the estimation error in both non-interactive and sequential interactive local models, if the privacy of the whole dataset needs to be preserved. Similar limitations also exist for other types of error measurements and in the relaxed local models. This indicates that differential privacy in high dimensional space is unlikely achievable for the problem. With the understanding of this limitation, we then present two algorithmic results. The first one is a sequential interactive LDP algorithm for the low dimensional sparse case, called Locally Differentially Private Iterative Hard Thresholding (LDP-IHT), which achieves a near optimal upper bound. This algorithm is actually rather general and can be used to solve quite a few other problems, such as (Local) DP-ERM with sparsity constraints and sparse regression with non-linear measurements. The second one is for the restricted (high dimensional) case where only the privacy of the responses (labels) needs to be preserved. For this case, we show that the optimal rate of the error estimation can be made logarithmically dependent on $p$ (i.e., $log p$ ) in the local model, where an upper bound is obtained by a label-privacy version of LDP-IHT. Experiments on real world and synthetic datasets confirm our theoretical analysis.
机译:在本文中,我们研究了本地差分隐私(LDP)模型下的稀疏线性回归问题。我们首先显示对维度的多项式依赖性<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999 / xlink“> $ P $ 空间的估计错误是非交互式和顺序交互式本地模型中的估计错误,如果需要保留整个数据集的隐私。其他类型的误差测量和放松的本地模型也存在类似的限制。这表明问题不太可能实现高维空间中的差别隐私。通过了解这种限制,我们提出了两个算法结果。第一个是用于低维稀疏外壳的顺序交互式LDP算法,称为局部差分私有迭代硬阈值(LDP-IHT),其实现了近最佳的上限。该算法实际上是一般的,可用于解决相当少量的其他问题,例如(本地)DP-ERM,具有稀疏性约束和具有非线性测量的稀疏回归。第二个是限制(高维)案例,只需要保留响应(标签)的隐私。对于这种情况,我们表明误差估计的最佳速率可以对数对数地依赖于<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“ http://www.w3.org/1999/xlink“> $ p $ (即 $ 在本地模型中记录p $ ),其中通过LDP-IHT的标签隐私版本获得了上限。现实世界和合成数据集的实验证实了我们的理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号