首页> 外文期刊>IEEE Transactions on Information Theory >Rate-Optimal Streaming Codes for Channels With Burst and Random Erasures
【24h】

Rate-Optimal Streaming Codes for Channels With Burst and Random Erasures

机译:具有突发和随机擦除的通道的速率最佳流式码

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we design erasure-correcting codes for channels with burst and random erasures, when a strict decoding delay constraint is in place. We consider the sliding-window-based packet erasure model proposed by Badr et al., where any time-window of width w contains either up to a random erasures or an erasure burst of length at most b. One needs to recover any erased packet with a strict decoding delay deadline of tau, where erasures are as per the channel model. Presently existing rate-optimal constructions in the literature require, in general, a field-size which grows exponential in tau, as long as alpha/tau remains a constant. In this work, we present a new rate-optimal code construction covering all channel and delay parameters, which requires an O(tau(2)) field-size. As a special case, when (b - a) = 1, we have a field-size linear in tau. We also present two other constructions having linear field-size, under certain constraints on channel and decoding delay parameters. As a corollary, we obtain low field-size, rate-optimal convolutional codes for any given column distance and column span. Simulations indicate that the newly proposed streaming code constructions offer lower packet-loss probabilities compared to existing schemes, for selected instances of Gilbert-Elliott and Fritchman channels.
机译:在本文中,当严格解码延迟约束到位时,我们设计具有突发和随机擦除的通道的擦除校正码。我们考虑Badr等人提出的基于滑动窗口的分组擦除模型,其中宽度W的任何时间窗口最多包含一个最多的擦除或长度的擦除突发。有人需要通过严格的解码延迟延迟期限恢复任何擦除的数据包,其中擦除根据频道模型。目前,文献中的现有率 - 最佳结构需要,通常,在TAU中增长指数的场大小,只要alpha / tau仍然是恒定的。在这项工作中,我们提出了一种覆盖所有通道和延迟参数的新速率最佳代码结构,这需要O(tau(2))字段大小。作为一个特殊情况,当(b - a)= 1时,我们在tau中有一个字段大小的线性。我们还在信道和解码延迟参数上的某些约束下呈现具有线性场大小的其他两个构造。作为一种推论,我们获得低场尺寸,对于任何给定的列距离和柱跨度的速率最佳卷积码。模拟表明,与现有方案相比,新提出的流式代码结构提供较低的数据包损耗概率,用于Gilbert-elliott和Fritchman通道的所选实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号