首页> 外文期刊>IEEE Transactions on Information Theory >From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes
【24h】

From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

机译:从笼中捕获集合和码字:一种在捕获集的最小尺寸和LDPC代码的最小距离上导出紧密上限的技术

获取原文
获取原文并翻译 | 示例

摘要

Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth.
机译:在图表理论中,定义为具有给定周长最小节点数量的常规图形的笼子。捕获组是负责低密度奇偶校验(LDPC)代码的错误地板的图形结构,并且在编码理论中得到了很好的研究。在本文中,我们在笼和捕获集之间进行连接。特别是,从笼子(或修改的笼子)开始,我们构建多个步骤的捕获集。基于笼和捕获集之间的连接,我们使用图形理论中的可用结果在笼中的尺寸下导出的尺寸突出集的尺寸,用于具有给定的可变程度和周长的可变常规LDPC代码。在许多情况下派生的上限符合最佳已知的下限,从而提供最小捕获集的实际尺寸。考虑到非零码字是捕获集合的特殊情况,我们还在这种码字的最小权重上导出了诸如可变程度和周长的可变常规LDPC代码的最小重量的紧密上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号