首页> 外文期刊>Information Theory, IEEE Transactions on >Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes
【24h】

Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes

机译:基于Protograph的LDPC卷积码的最小距离和陷印集分析

获取原文
获取原文并翻译 | 示例

摘要

Low-density parity-check (LDPC) convolutional codes have been shown to be capable of achieving capacity-approaching performance with iterative message-passing decoding. In the first part of this paper, using asymptotic methods to obtain lower bounds on the free distance to constraint length ratio, we show that several ensembles of regular and irregular LDPC convolutional codes derived from protograph-based LDPC block codes have the property that the free distance grows linearly with respect to the constraint length, i.e., the ensembles are asymptotically good. In particular, we show that the free distance to constraint length ratio of the LDPC convolutional code ensembles exceeds the minimum distance to block length ratio of the corresponding LDPC block code ensembles. A large free distance growth rate indicates that codes drawn from the ensemble should perform well at high signal-to-noise ratios under maximum-likelihood decoding. When suboptimal decoding methods are employed, there are many factors that affect the performance of a code. Recently, it has been shown that so-called trapping sets are a significant factor affecting decoding failures of LDPC codes over the additive white Gaussian noise channel with iterative message-passing decoding. In the second part of this paper, we study the trapping sets of the asymptotically good protograph-based LDPC convolutional codes considered earlier. By extending the theory presented in part one and using similar bounding techniques, we show that the size of the smallest non-empty trapping set grows linearly with the constraint length for these ensembles.
机译:低密度奇偶校验(LDPC)卷积码已被证明能够通过迭代的消息传递解码实现接近容量的性能。在本文的第一部分中,使用渐近方法获得自由距离与约束长度比的下界,我们证明了从基于原型的LDPC块代码派生的规则和不规则LDPC卷积码的合奏具有自由距离相对于约束长度线性增长,即,合奏渐近良好。特别地,我们表明,LDPC卷积码集合的自由距离与约束长度之比超过了相应LDPC块码集合的最小距离与区块长度之比。自由距离增长速率较大,表明从集合中提取的代码在最大似然解码下应能在高信噪比下良好运行。当采用次优解码方法时,有许多因素会影响代码的性能。最近,已经显示出所谓的陷波集是影响具有迭代消息通过解码的,在加性白高斯噪声信道上的LDPC码的解码失败的重要因素。在本文的第二部分,我们研究了较早考虑的基于渐近良好的基于​​原型的LDPC卷积码的陷印集。通过扩展第一部分中提出的理论并使用类似的边界技术,我们表明最小的非空陷波集的大小随这些集合的约束长度线性增长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号