首页> 外文期刊>IEEE Transactions on Information Theory >High Dimensional Inference With Random Maximum A-Posteriori Perturbations
【24h】

High Dimensional Inference With Random Maximum A-Posteriori Perturbations

机译:随机最大A-Bouthiori扰动的高尺寸推断

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach, called perturb-max, for high-dimensional statistical inference in graphical models that is based on applying random perturbations followed by optimization. This framework injects randomness into maximum a-posteriori (MAP) predictors by randomly perturbing the potential function for the input. A classic result from extreme value statistics asserts that perturb-max operations generate unbiased samples from the Gibbs distribution using high-dimensional perturbations. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. However, when the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. This paper shows that the expected value of perturb-max inference with low dimensional perturbations can be used sequentially to generate unbiased samples from the Gibbs distribution. Furthermore the expected value of the maximal perturbations is a natural bound on the entropy of such perturb-max models. A measure concentration result for perturb-max values shows that the deviation of their sampled average from its expectation decays exponentially in the number of samples, allowing effective approximation of the expectation.
机译:本文介绍了一种新的方法,称为Perturb-max,用于基于应用随机扰动之后的图形模型中的高维统计推断。该框架通过随机扰乱输入的潜在功能来将随机性注入最大A-Bouthiori(MAP)预测器。来自极值统计数据的经典结果断言,Perturb-Max操作使用高维扰动从GIBBS分布生成非偏见的样本。不幸的是,产生如此多的高维随机变量的计算成本可能是禁止的。然而,当扰动为低维时,对扰动 - 最大预测的采样与地图优化一样有效。本文表明,可顺序地使用具有低尺寸扰动的扰动 - 最大推理的预期值以产生来自GIBBS分布的非偏叠样品。此外,最大扰动的预期值是这种Perturb-Max模型的熵上的自然界。扰动 - 最大值的测量浓度结果表明,它们采样的平均值从其期望逐渐衰减在样品的数量中,允许有效地逼近期望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号