首页> 外文期刊>IEEE Transactions on Information Theory >Construction of Optimal Locally Repairable Codes via Automorphism Groups of Rational Function Fields
【24h】

Construction of Optimal Locally Repairable Codes via Automorphism Groups of Rational Function Fields

机译:通过有理函数域的自同构群构造最优的局部可修复代码

获取原文
获取原文并翻译 | 示例

摘要

Locally repairable codes, or locally recoverable codes (LRC for short), are designed for applications in distributed and cloud storage systems. Similar to classical block codes, there is an important bound called the Singleton-type bound for locally repairable codes. In this paper, an optimal locally repairable code refers to a block code achieving this Singleton-type bound. Like classical MDS codes, optimal locally repairable codes carry some very nice combinatorial structures. Since the introduction of the Singleton-type bound for locally repairable codes, people have put tremendous effort into construction of optimal locally repairable codes. There are a few constructions of optimal locally repairable codes in the literature. Most of these constructions are realized via either combinatorial or algebraic structures. In this paper, we apply automorphism group of the rational function field to construct optimal locally repairable codes by considering the group action on projective lines over finite fields. Due to various subgroups of the projective general linear group, we are able to construct optimal locally repairable codes with flexible locality as well as smaller alphabet size comparable to the code length. In particular, we produce new families of q-ary locally repairable codes, including codes of length q+1 via cyclic groups.
机译:本地可修复代码或本地可恢复代码(简称LRC)是为分布式和云存储系统中的应用程序设计的。与经典分组代码相似,对于本地可修复代码,有一个重要的边界称为Singleton型边界。在本文中,最佳的局部可修复代码是指实现此Singleton类型限制的分组代码。像经典的MDS代码一样,最佳的本地可修复代码带有一些非常好的组合结构。自从引入适用于本地可修复代码的Singleton类型绑定以来,人们就投入了巨大的精力来构建最佳的本地可修复代码。文献中有一些最佳的局部可修复代码的构造。这些构造大多数是通过组合结构或代数结构实现的。在本文中,我们通过考虑有限域上投影线上的群作用,应用有理函数场的自同构群构造最优的局部可修复码。由于射影一般线性组的各个子组,我们能够构建具有灵活局部性以及与代码长度相当的较小字母大小的最佳局部可修复代码。特别是,我们产生了新的q元本地可修复代码系列,包括通过循环组的长度为q + 1的代码。

著录项

  • 来源
    《IEEE Transactions on Information Theory》 |2020年第1期|210-221|共12页
  • 作者

  • 作者单位

    Fudan Univ Shanghai Key Lab Intelligent Informat Proc Sch Comp Sci Shanghai 200433 Peoples R China;

    Yangzhou Univ Sch Math Sci Yangzhou 225002 Jiangsu Peoples R China;

    Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai 200240 Peoples R China|Nanyang Technol Univ Sch Phys & Math Sci Singapore 637371 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Automorphism groups; locally repairable codes; Riemann-Roch spaces; rational function fields;

    机译:自同构群;本地可修复代码;黎曼-罗奇空间有理函数域;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号