首页> 外文期刊>IEEE Transactions on Information Theory >On the Conditional Smooth Rényi Entropy and its Applications in Guessing and Source Coding
【24h】

On the Conditional Smooth Rényi Entropy and its Applications in Guessing and Source Coding

机译:条件光滑Rényi熵及其在猜测和信源编码中的应用

获取原文
获取原文并翻译 | 示例

摘要

A novel definition of the conditional smooth Renyi entropy, which is different from that of Renner and Wolf, is introduced. It is shown that our definition of the conditional smooth Renyi entropy is appropriate for providing lower and upper bounds on the optimal guessing moment in a guessing problem where the guesser is allowed to stop guessing and declare an error. Further a general formula for the optimal guessing exponent is presented. In particular, a single-letterized formula for a mixture of i.i.d. sources is obtained. It is also shown that our definition is appropriate to characterize the optimal exponential moment of the codeword length in the problem of source coding with common side-information available at the encoder and decoder under a constraint on the probability of a decoding error.
机译:介绍了不同于Renner和Wolf的条件光滑Renyi熵的新定义。结果表明,我们对条件光滑Renyi熵的定义适合在猜测问题中提供最佳猜测时刻的上下限,其中允许猜测者停止猜测并声明错误。进一步给出了最佳猜测指数的一般公式。特别是,i.i.d的混合物的单字母配方。获得资源。还显示出,我们的定义适合于在源编码问题中,在对解码错误的概率有约束的情况下,利用在编码器和解码器处可获得的公共边信息来表征码字长度的最佳指数矩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号