首页> 外文期刊>IEEE Transactions on Information Theory >One-Bit Compressive Sensing With Projected Subgradient Method Under Sparsity Constraints
【24h】

One-Bit Compressive Sensing With Projected Subgradient Method Under Sparsity Constraints

机译:稀疏约束下投影次梯度法的一比特压缩感知

获取原文
获取原文并翻译 | 示例

摘要

One-bit compressive sensing theory shows that the sparse signals can be almost exactly reconstructed from a small number of one-bit quantized linear measurements. This paper presents the convergence analysis of the binary iterative hard thresholding (BIHT) algorithm which is a state-of-the-art recovery algorithm in one-bit compressive sensing. The basic idea of the convergence analysis is to view BIHT as a kind of projected subgradient method under sparsity constrains. To the best of our knowledge, this is the first convergence analysis of BIHT. We first consider a general convex function subject to sparsity constraints and connect it with the non-convex model in one-bit compressive sensing literatures. A projected subgradient method is proposed to solve the general model and some convergence results are established. A stronger convergence theorem for alpha-strongly convex functions without assumption on differentiable condition is also established. Furthermore, the corresponding stochastic projected subgradient method is provided with convergence guarantee. In our settings, BIHT is a special case of the projected subgradient method. Therefore, the convergence analysis can be applied to BIHT naturally. Then, we apply the projected subgradient method to some related non-convex optimization models arising in compressive sensing with l(1)-constraint, sparse support vector machines, and rectifier linear units regression. Finally, some numerical examples are presented to show the validity of our convergence analysis. The numerical experiments also show that the proposed projected subgradient method is very simple to implement, robust to sparse noise, and effective for sparse recovery problems.
机译:一比特压缩感测理论表明,稀疏信号几乎可以从少量的一比特量化线性测量中准确地重建出来。本文介绍了二进制迭代硬阈值(BIHT)算法的收敛性分析,该算法是一种位压缩感知中的最新恢复算法。收敛分析的基本思想是将BIHT视为在稀疏约束下的一种投影次梯度方法。据我们所知,这是BIHT的首次收敛分析。我们首先考虑受稀疏性约束的一般凸函数,并将其与一位压缩感知文献中的非凸模型联系起来。提出了一种投影次梯度方法来求解一般模型,并建立了一些收敛性结果。还建立了无需假设可微条件的α-强凸函数的更强收敛定理。此外,为相应的随机投影次梯度方法提供了收敛保证。在我们的设置中,BIHT是投影次梯度方法的特例。因此,收敛性分析可以自然地应用于BIHT。然后,我们将投影次梯度法应用于一些相关的非凸优化模型,这些模型在具有l(1)约束,稀疏支持向量机和整流器线性单元回归的压缩感测中产生。最后,通过一些数值例子说明了收敛性分析的有效性。数值实验还表明,所提出的投影次梯度法实现起来非常简单,对稀疏噪声具有鲁棒性,对稀疏恢复问题有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号