首页> 外文会议>Conference on Uncertainty in Artificial Intelligence >Projected Subgradient Methods for Learning Sparse Gaussians
【24h】

Projected Subgradient Methods for Learning Sparse Gaussians

机译:稀疏高斯投影的次梯度方法

获取原文

摘要

Gaussian Markov random fields (GMRFs) are useful in a broad range of applications. In this paper we tackle the problem of learning a sparse GMRF in a high-dimensional space. Our approach uses the (e)_1-norm as a regularization on the inverse covariance matrix. We utilize a novel projected gradient method, which is faster than previous methods in practice and equal to the best performing of these in asymptotic complexity. We also extend the (e)_1 -regularized objective to the problem of sparsifying entire blocks within the inverse covariance matrix. Our methods generalize fairly easily to this case, while other methods do not. We demonstrate that our extensions give better generalization performance on two real domains-biological network analysis and a 2D-shape modeling image task.
机译:高斯马尔可夫随机场(GMRF)在广泛的应用中很有用。在本文中,我们解决了在高维空间中学习稀疏GMRF的问题。我们的方法使用(e)_1范数作为逆协方差矩阵的正则化。我们利用一种新颖的投影梯度方法,该方法比实际中的先前方法更快,并且在渐进复杂性方面等于这些方法的最佳性能。我们还将(e)_1-正则化目标扩展到稀疏逆协方差矩阵内的整个块的问题。我们的方法很容易推广到这种情况,而其他方法则不能。我们证明了我们的扩展在两个实际领域(生物网络分析和2D形状建模图像任务)上提供了更好的泛化性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号