首页> 外文OA文献 >Performance Analysis between Two Sparsity Constrained MRI Methods: Highly Constrained Backprojection(HYPR) and Compressed Sensing(CS) for Dynamic Imaging
【2h】

Performance Analysis between Two Sparsity Constrained MRI Methods: Highly Constrained Backprojection(HYPR) and Compressed Sensing(CS) for Dynamic Imaging

机译:两种稀疏约束MRI方法之间的性能分析:高约束反投影(HYPR)和压缩传感(CS)用于动态成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most important challenges in dynamic magnetic resonance imaging (MRI) is to achieve high spatial and temporal resolution when it is limited by system performance. It is desirable to acquire data fast enough to capture the dynamics in the image time series without losing high spatial resolution and signal to noise ratio. Many techniques have been introduced in the recent decades to achieve this goal. Newly developed algorithms like Highly Constrained Backprojection (HYPR) and Compressed Sensing (CS) reconstruct images from highly undersampled data using constraints. Using these algorithms, it is possible to achieve high temporal resolution in the dynamic image time series with high spatial resolution and signal to noise ratio (SNR). In this thesis we have analyzed the performance of HYPR to CS algorithm. In assessing the reconstructed image quality, we considered computation time, spatial resolution, noise amplification factors, and artifact power (AP) using the same number of views in both algorithms, and that number is below the Nyquist requirement. In the simulations performed, CS always provides higher spatial resolution than HYPR, but it is limited by computation time in image reconstruction and SNR when compared to HYPR. HYPR performs better than CS in terms of SNR and computation time when the images are sparse enough. However, HYPR suffers from streaking artifacts when it comes to less sparse image data.
机译:在动态磁共振成像(MRI)中,最重要的挑战之一是在受系统性能限制的情况下实现高空间和时间分辨率。期望以足够快的速度获取数据以捕获图像时间序列中的动态,而又不损失高空间分辨率和信噪比。在最近的几十年中,已经引入了许多技术来实现这一目标。最新开发的算法,例如高度约束反投影(HYPR)和压缩感知(CS),使用约束条件从高度欠采样的数据中重建图像。使用这些算法,可以在动态图像时间序列中以高空间分辨率和信噪比(SNR)实现高时间分辨率。本文分析了HYPR to CS算法的性能。在评估重建的图像质量时,我们在两种算法中使用相同数量的视图考虑了计算时间,空间分辨率,噪声放大因子和伪影功率(AP),并且该数量低于奈奎斯特要求。在执行的仿真中,CS始终提供比HYPR更高的空间分辨率,但是与HYPR相比,它受到图像重建中的计算时间和SNR的限制。当图像稀疏时,HYPR在SNR和计算时间方面比CS更好。但是,当涉及较少的稀疏图像数据时,HYPR会出现条纹伪影。

著录项

  • 作者

    Arzouni Nibal;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号