首页> 外文期刊>IEEE Transactions on Information Theory >A New Method to Construct Strictly Optimal Frequency Hopping Sequences With New Parameters
【24h】

A New Method to Construct Strictly Optimal Frequency Hopping Sequences With New Parameters

机译:用新参数构造严格最优跳频序列的新方法

获取原文
获取原文并翻译 | 示例

摘要

In order to evaluate the goodness of frequency hopping (FH) sequence design, the periodic Hamming correlation function is used as an important measure. Usually, the length of correlation window is shorter than the period of the chosen FH sequence, so the study of the partial Hamming correlation of FH sequence is particularly important. If an FH sequence or an FH sequence set has an optimal partial Hamming correlation with respect to the partial Hamming correlation bound for all length of correlation window, then the FH sequence or the FH sequence set is said to be strictly optimal. In this paper, we first prove that there is no strictly optimal FH sequence set of family size M and sequence length N over a frequency slot set of size q with respect to the partial Hamming correlation bound derived by Niu et al. when N > q2/M and q > 2, and that by Cai et al. when N > q2/M and q > 2N/(N - 2). Furthermore, we define a special partition -type difference packing (DP) called [N, V, Hall PDP and give several classes of [N, V, Hail PDPs. Then, we present a new construction of strictly optimal FH sequences. By choosing different PDPs, the FH sequences constructed can give new and flexible parameters. By utilizing this construction method recursively, we can obtain new [N, V, H i PDPs, which lead to infinitely many classes of strictly optimal FH sequences with new parameters. Moreover, based upon an [N, V, 1/1,1 PDP, we present a construction of strictly optimal FH sequence sets. By preceding construction method and recursive construction, we can also obtain infinite classes of strictly optimal FH sequence sets which can give new and flexible parameters.
机译:为了评估跳频(FH)序列设计的优越性,周期性汉明相关函数被用作一项重要措施。通常,相关窗口的长度比所选FH序列的周期短,因此研究FH序列的部分汉明相关性尤为重要。如果FH序列或FH序列组相对于在相关窗口的所有长度上的部分汉明相关性具有最优的部分汉明相关性,则将FH序列或FH序列组称为严格最优。在本文中,我们首先证明,相对于由Niu等人推导的部分汉明相关性界,在大小为q的频率时隙集上,没有家庭大小为M且序列长度为N的严格最优FH序列集。当N> q2 / M和q> 2时,蔡等人的结论。当N> q2 / M且q> 2N /(N-2)时。此外,我们定义了一种特殊的分区类型差异打包(DP),称为[N,V,Hall PDP,并提供了几类[N,V,Hail PDP。然后,我们提出了严格最优FH序列的新构造。通过选择不同的PDP,构建的FH序列可以提供新的灵活参数。通过递归地使用此构造方法,我们可以获得新的[N,V,H i PDP,这会导致无限多类具有新参数的严格最优FH序列。此外,基于[N,V,1 / 1,1 PDP,我们提出了严格最优的FH序列集的构造。通过前面的构造方法和递归构造,我们还可以获得无限类的严格最优的FH序列集,这些序列集可以提供新的灵活参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号