首页> 外文期刊>IEEE transactions on information forensics and security >Frontal View Gait Recognition With Fusion of Depth Features From a Time of Flight Camera
【24h】

Frontal View Gait Recognition With Fusion of Depth Features From a Time of Flight Camera

机译:飞行时间相机融合深度特征的前视步态识别

获取原文
获取原文并翻译 | 示例

摘要

Frontal view gait recognition for people identification has been carried out using single RGB, stereo RGB, Kinect 1.0, and Doppler radar. However, existing methods based on these camera technologies suffer from several problems. Therefore, we propose a four-part method for frontal view gait recognition based on the fusion of multiple features acquired from a Time-of-Flight (ToF) camera. We have developed a gait data set captured by a ToF camera. The data set includes two sessions recorded seven months apart, with 46 and 33 subjects, respectively, each with six walks with five covariates. The four-part method includes: a new human silhouette extraction algorithm that reduces the multiple reflection problem experienced by ToF cameras; a frame selection method based on a new gait cycle detection algorithm; four new gait image representations; and a novel fusion classifier. Rigorous experiments are carried out to compare the proposed method with state-of-the-art methods. The results show distinct improvements over recognition rates for all covariates. The proposed method outperforms all major existing approaches for all covariates and results in 66.1% and 81.0% Rank 1 and Rank 5 recognition rates, respectively, in overall covariates, compared with a best state-of-the-art method performance of 35.7% and 57.7%.
机译:使用单个RGB,立体声RGB,Kinect 1.0和多普勒雷达进行了用于识别人员的正面步态识别。但是,基于这些相机技术的现有方法存在若干问题。因此,基于从飞行时间(ToF)相机获取的多个特征的融合,我们提出了一种由四部分组成的方法,用于进行正面步态识别。我们已经开发了由ToF相机捕获的步态数据集。数据集包括两个会话,每个会话间隔七个月记录,分别有46和33个主题,每个主题有6个步行和5个协变量。该方法由四部分组成:一种新的人体轮廓提取算法,可减少ToF相机遇到的多次反射问题;一种基于新步态周期检测算法的帧选择方法;四个新的步态图像表示;和新型的融合分类器进行了严格的实验,以将建议的方法与最新方法进行比较。结果表明,所有协变量的识别率都有明显提高。所提出的方法在所有协变量方面的表现均优于所有主要的现有方法,与最佳的最佳方法性能相比,总体协变量的第1级和第5级识别率分别达到66.1%和81.0%分别为35.7%和57.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号