首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >A Parametric Correlation Framework for the Statistical Evaluation and Estimation of Biometric-Based Classification Performance in a Single Environment
【24h】

A Parametric Correlation Framework for the Statistical Evaluation and Estimation of Biometric-Based Classification Performance in a Single Environment

机译:用于单一环境中基于生物识别的分类性能的统计评估和估计的参数相关框架

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose parametric correlation models for the assessment of biometric classification error rates. Correctly specified correlations are integral to variance estimation and the corresponding inferential quantities which depend upon these estimates. We present methodology here for false match and false nonmatch error rates for a single environment. This paper generalizes other work that has previously appeared in the bioauthentication literature. Since symmetric- and asymmetric-matching algorithms are used in practice, we present a general correlation structure for both types of algorithms. Along with the correlation structure, we describe estimators for the parameters in these models. The correlation structure described here for binary decision data is then used to derive explicit confidence intervals and sample-size calculations for the estimation of false match and false nonmatch error rates. We then apply the correlation structure described herein to two match scores databases to illustrate our approach. A discussion of the utility and consequences of this correlation structure are also provided.
机译:在本文中,我们提出了用于评估生物分类错误率的参数相关模型。正确指定的相关性是方差估计和依赖于这些估计的相应推断量必不可少的。我们在这里介绍了针对单个环境的错误匹配和错误不匹配错误率的方法。本文概括了以前在生物认证文献中出现的其他工作。由于在实践中使用了对称和非对称匹配算法,因此我们为两种算法都提供了一种通用的相关结构。连同相关结构,我们描述了这些模型中参数的估计量。然后,将此处描述的用于二进制决策数据的相关结构用于导出显式的置信区间和样本大小计算,以估计错误匹配和错误不匹配错误率。然后,我们将本文所述的相关结构应用于两个匹配分数数据库,以说明我们的方法。还提供了此相关结构的效用和后果的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号