首页> 外文期刊>IEEE transactions on information forensics and security >Exploiting Spatio-Temporal Scene Structure for Wide-Area Activity Analysis in Unconstrained Environments
【24h】

Exploiting Spatio-Temporal Scene Structure for Wide-Area Activity Analysis in Unconstrained Environments

机译:利用时空场景结构进行无约束环境下的广域活动分析

获取原文
获取原文并翻译 | 示例

摘要

Surveillance videos in unconstrained environments typically consist of long duration sequences of activities which occur at different spatio-temporal locations and can involve multiple people acting simultaneously. Often, the activities have contextual relationships with one another. Although context has been studied in the past for the purpose of activity recognition, the use of context in recognition of activities in such challenging environments is relatively unexplored. In this paper, we propose a novel method for capturing the spatio-temporal context between activities in a Markov random field. The structure of the MRF is improvised upon during test time and not predefined, unlike many approaches that model the contextual relationships between activities. Given a collection of videos and a set of weak classifiers for individual activities, the spatio-temporal relationships between activities are represented as probabilistic edge weights in the MRF. This model provides a generic representation for an activity sequence that can extend to any number of objects and interactions in a video. We show that the recognition of activities in a video can be posed as an inference problem on the graph. We conduct experiments on the publicly available UCLA office dataset and the VIRAT dataset, to demonstrate the improvement in recognition accuracy using our proposed model as opposed to recognition using state-of-the-art features on individual activity regions.
机译:在不受限制的环境中的监视视频通常由长时间的活动序列组成,这些活动序列发生在不同的时空位置,并且可能涉及多个人同时行动。通常,这些活动彼此之间具有上下文关系。尽管过去已经出于活动识别的目的对上下文进行了研究,但是在这种挑战性环境中将上下文用于活动识别的研究相对较少。在本文中,我们提出了一种新的方法来捕获马尔可夫随机场中活动之间的时空上下文。 MRF的结构是在测试期间即兴使用的,而不是预先定义的,与许多对活动之间的上下文关系建模的方法不同。给定视频集合和针对单个活动的一组弱分类器,活动之间的时空关系在MRF中表示为概率边缘权重。该模型为活动序列提供了通用表示形式,该序列可以扩展到视频中任意数量的对象和交互。我们表明,视频中活动的识别可以作为图上的推理问题提出。我们对可公开获取的UCLA办公室数据集和VIRAT数据集进行了实验,以证明使用我们提出的模型进行识别的准确性得到了提高,而不是使用单个活动区域上的最新功能进行了识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号