首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >Analyzing Android Encrypted Network Traffic to Identify User Actions
【24h】

Analyzing Android Encrypted Network Traffic to Identify User Actions

机译:分析Android加密的网络流量以识别用户操作

获取原文
获取原文并翻译 | 示例

摘要

Mobile devices can be maliciously exploited to violate the privacy of people. In most attack scenarios, the adversary takes the local or remote control of the mobile device, by leveraging a vulnerability of the system, hence sending back the collected information to some remote web service. In this paper, we consider a different adversary, who does not interact actively with the mobile device, but he is able to eavesdrop the network traffic of the device from the network side (e.g., controlling a Wi-Fi access point). The fact that the network traffic is often encrypted makes the attack even more challenging. In this paper, we investigate to what extent such an external attacker can identify the specific actions that a user is performing on her mobile apps. We design a system that achieves this goal using advanced machine learning techniques. We built a complete implementation of this system, and we also run a thorough set of experiments, which show that our attack can achieve accuracy and precision higher than 95%, for most of the considered actions. We compared our solution with the three state-of-the-art algorithms, and confirming that our system outperforms all these direct competitors.
机译:可以恶意利用移动设备来侵犯人们的隐私。在大多数攻击情形中,攻击者通过利用系统的漏洞来控制移动设备的本地或远程控制,从而将收集到的信息发送回某个远程Web服务。在本文中,我们考虑了一个不同的对手,该对手没有与移动设备进行主动交互,但是他能够从网络侧窃听设备的网络流量(例如,控制Wi-Fi接入点)。网络流量经常被加密的事实使攻击更具挑战性。在本文中,我们调查了这种外部攻击者在多大程度上可以识别用户在其移动应用程序上执行的特定操作。我们设计了一种使用高级机器学习技术来实现此目标的系统。我们构建了该系统的完整实现,并且还运行了一组详尽的实验,这些实验表明,对于大多数考虑的操作,我们的攻击可以达到95%以上的准确性和精确度。我们将我们的解决方案与三种最新算法进行了比较,并确认我们的系统优于所有这些直接竞争对手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号