首页> 外文期刊>Computers & Security >Identifying infected users via network traffic
【24h】

Identifying infected users via network traffic

机译:通过网络流量识别受感染的用户

获取原文
获取原文并翻译 | 示例

摘要

There has been increasing interest in deeper understandings of users and user behavior to tailor and strengthen cybersecurity. Just as in the field of medicine where symptoms of a disease trigger early doctor intervention, we investigate the feasibility of extracting indicators from network traffic that can be used for proactive identification of user infection, which in turn can prompt proactive intervention from a network administrator. Using two months of wireless traffic from a large, public university, we attempt to differentiate between 1923 users with infected devices and random samples of uninfected users. We extract 36 features from the traffic and apply various dimensionality reduction techniques, unsupervised clustering methods, and supervised learning algorithms. Principal Component Analysis suggests 10 features that contribute most to explaining about 92.8% of variance in user behavior, revealing 26 features less useful for understanding users. K-means clustering partitions users in distinct groups that in the majority of cases separate the infected and uninfected users, with some clusters being composed of up to 100.0% of only one type of user. Finally, supervised learning yields accuracy values up to 79.0% and ROC AUC values up to 86.0% when classifying users as either infected or uninfected. Our work shows there is potential to derive infection 'symptoms' from network traffic. Published by Elsevier Ltd.
机译:人们越来越希望对用户和用户行为有更深入的了解,以定制和加强网络安全。就像在疾病症状触发早期医生干预的医学领域一样,我们研究了从网络流量中提取指标以用于主动识别用户感染的可行性,这反过来又可以促使网络管理员进行主动干预。通过使用来自大型公立大学的两个月的无线流量,我们尝试区分1923个受感染设备的用户和随机未感染用户的样本。我们从流量中提取36个特征,并应用各种降维技术,无监督的聚类方法和有监督的学习算法。主成分分析建议10个功能最有助于解释约92.8%的用户行为方差,揭示26个对理解用户不太有用的功能。 K-means群集将用户划分为不同的组,在大多数情况下,这些组将受感染和未感染的用户分开,某些群集最多仅占一种类型的用户的100.0%。最后,在将用户分类为受感染或未感染时,监督学习产生的准确度值高达79.0%,ROC AUC值高达86.0%。我们的工作表明,有可能从网络流量中衍生出感染“症状”。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号