首页> 外文期刊>IEEE Transactions on Image Processing >Efficient multiframe Wiener restoration of blurred and noisy image sequences
【24h】

Efficient multiframe Wiener restoration of blurred and noisy image sequences

机译:高效的多帧维纳复原模糊和嘈杂的图像序列

获取原文
获取原文并翻译 | 示例

摘要

Computationally efficient multiframe Wiener filtering algorithms that account for both intraframe (spatial) and interframe (temporal) correlations are proposed for restoring image sequences that are degraded by both blur and noise. One is a general computationally efficient multiframe filter, the cross-correlated multiframe (CCMF) Wiener filter, which directly utilizes the power and cross power spectra of only N*N matrices, where N is the number of frames used in the restoration. In certain special cases the CCMF lends itself to a closed-form solution that does not involve any matrix inversion. A special case is the motion-compensated multiframe (MCMF) filter, where each frame is assumed to be a globally shifted version of the previous frame. In this case, the interframe correlations can be implicitly accounted for using the estimated motion information. Thus the MCMF filter requires neither explicit estimation of cross correlations among the frames nor matrix inversion. Performance and robustness results are given.
机译:提出了计算有效的多帧维纳滤波算法,该算法同时考虑了帧内(空间)和帧间(时间)相关性,以恢复由于模糊和噪声而退化的图像序列。一种是通用的计算效率高的复帧滤波器,即互相关复帧(CCMF)维纳滤波器,它直接利用仅N * N个矩阵的功率和交叉功率谱,其中N是恢复中使用的帧数。在某些特殊情况下,CCMF适用于不涉及任何矩阵求逆的闭式解决方案。一种特殊情况是运动补偿复帧(MCMF)滤波器,其中假定每个帧都是前一帧的全局移位版本。在这种情况下,可以使用估计的运动信息来隐式地考虑帧间相关性。因此,MCMF滤波器既不需要显式估计帧之间的互相关,也不需要矩阵求逆。给出了性能和鲁棒性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号