首页> 外文期刊>IEEE Transactions on Image Processing >Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences
【24h】

Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences

机译:同时进行递归位移估计和噪声模糊图像序列的恢复

获取原文
获取原文并翻译 | 示例

摘要

We develop a recursive model-based maximum a posteriori (MAP) estimator that simultaneously estimates the displacement vector field (DVF) and the intensity field from a noisy-blurred image sequence. Current motion-compensated spatio-temporal noise filters treat the estimation of the DVF as a preprocessing step. Generally, no attempt is made to verify the accuracy of these estimates prior to their use in the filter. By simultaneously estimating these two fields, we establish a link between the two estimators. It is through this link that the DVF estimate and its corresponding accuracy information are shared with the other intensity estimator, and vice versa. To model the DVF and the intensity field, we use coupled Gauss-Markov (CGM) models. A CGM model consists of two levels: an upper level, which is made up of several submodels with various characteristics, and a lower level or line field, which governs the transitions between the submodels. The CGM models are well suited for estimating the displacement and intensity fields since the resulting estimates preserve the boundaries between the stationary areas present in both fields. Detailed line fields are proposed for the modeling of these boundaries, which also take into account the correlations that exist between these two fields. A Kalman-type estimator results, followed by a decision criterion for choosing the appropriate set of line fields. Several experiments using noisy and noisy-blurred image sequences demonstrate the superior performance of the proposed algorithm with respect to prediction error and mean-square error.
机译:我们开发了一个基于递归模型的最大后验(MAP)估计器,该估计器同时从噪声模糊的图像序列中估计位移矢量场(DVF)和强度场。当前的运动补偿时空噪声滤波器将DVF的估计视为预处理步骤。通常,在将这些估计值用于滤波器之前,不会尝试验证它们的准确性。通过同时估计这两个字段,我们在两个估计器之间建立了联系。正是通过此链接,DVF估计及其相应的精度信息才与其他强度估计器共享,反之亦然。为了对DVF和强度场建模,我们使用耦合高斯-马尔可夫(CGM)模型。 CGM模型由两个级别组成:上级由多个具有不同特征的子模型组成,下级或线域则控制子模型之间的过渡。 CGM模型非常适合估计位移场和强度场,因为所得的估计值保留了两个场中存在的静止区域之间的边界。建议使用详细的线字段来对这些边界进行建模,同时还要考虑这两个字段之间存在的相关性。卡尔曼型估计器得到结果,随后是用于选择适当的线域集的决策标准。使用噪点和噪点模糊图像序列的几个实验证明了该算法在预测误差和均方误差方面的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号