首页> 外文期刊>IEEE Transactions on Image Processing >Iterative maximum likelihood displacement field estimation in quantum-limited image sequences
【24h】

Iterative maximum likelihood displacement field estimation in quantum-limited image sequences

机译:量子受限图像序列中的迭代最大似然位移场估计

获取原文
获取原文并翻译 | 示例

摘要

We develop an algorithm for obtaining the maximum likelihood (ML) estimate of the displacement vector field (DVP) from two consecutive image frames of an image sequence acquired under quantum-limited conditions. The estimation of the DVF has applications in temporal filtering, object tracking, stereo matching, and frame registration in low-light level image sequences as well as low-dose clinical X-ray image sequences. In the latter case, a controlled X-ray dosage reduction may be utilized to lower the radiation exposure to the patient and the medical staff. The quantum-limited effect is modeled as an undesirable, Poisson-distributed, signal-dependent noise artifact. A Fisher-Bayesian formulation is used to estimate the DVF and a block component search algorithm is employed in obtaining the solution. Several experiments involving a phantom sequence and a teleconferencing image sequence with realistic motion demonstrate the effectiveness of this estimator in obtaining the DVF under severe quantum noise conditions (20-25 events/pixel).
机译:我们开发了一种算法,用于从在量子限制条件下获取的图像序列的两个连续图像帧中获得位移矢量场(DVP)的最大似然(ML)估计。 DVF的估计可应用于低光水平图像序列以及低剂量临床X射线图像序列中的时间滤波,对象跟踪,立体匹配和帧配准。在后一种情况下,可以利用受控的X射线剂量减少来降低对患者和医护人员的辐射暴露。量子限制效应被建模为不希望的,泊松分布的,依赖信号的噪声伪像。 Fisher-Bayesian公式用于估计DVF,并且使用块成分搜索算法来获得解。涉及幻影序列和具有真实运动的电话会议图像序列的几个实验证明了该估计器在严峻的量子噪声条件(20-25个事件/像素)下获得DVF的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号