首页> 外文期刊>IEEE Transactions on Image Processing >A unified approach to optimal image interpolation problems based on linear partial differential equation models
【24h】

A unified approach to optimal image interpolation problems based on linear partial differential equation models

机译:基于线性偏微分方程模型的最优图像插值问题的统一方法

获取原文
获取原文并翻译 | 示例

摘要

The unified approach to optimal image interpolation problems presented provides a constructive procedure for finding explicit and closed-form optimal solutions to image interpolation problems when the type of interpolation can be either spatial or temporal-spatial. The unknown image is reconstructed from a finite set of sampled data in such a way that a mean-square error is minimized by first expressing the solution in terms of the reproducing kernel of a related Hilbert space, and then constructing this kernel using the fundamental solution of an induced linear partial differential equation, or the Green's function of the corresponding self-adjoint operator. It is proved that in most cases, closed-form fundamental solutions (or Green's functions) for the corresponding linear partial differential operators can be found in the general image reconstruction problem described by a first- or second-order linear partial differential operator. An efficient method for obtaining the corresponding closed-form fundamental solutions (or Green's functions) of the operators is presented. A computer simulation demonstrates the reconstruction procedure.
机译:提出的最优图像插值问题的统一方法为在图像插值类型可以是空间或时空时找到图像插值问题的显式和闭式最优解提供了一个建设性的过程。从有限的一组采样数据中重构出未知图像,使得均方误差最小,方法是首先根据相关希尔伯特空间的再现核表达解,然后使用基本解构造该核归纳的线性偏微分方程或相应自伴算子的格林函数。事实证明,在大多数情况下,可以在一阶或二阶线性偏微分算子描述的一般图像重建问题中找到对应线性偏微分算子的闭式基本解(或格林函数)。提出了一种有效的方法,用于获得算子的相应封闭形式基本解(或格林函数)。计算机仿真演示了重建过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号