首页> 外文期刊>IEEE Transactions on Image Processing >Estimation of linear parametric models of nonGaussian discrete random fields with application to texture synthesis
【24h】

Estimation of linear parametric models of nonGaussian discrete random fields with application to texture synthesis

机译:非高斯离散随机场线性参数模型的估计及其在纹理合成中的应用

获取原文
获取原文并翻译 | 示例

摘要

A general (possibly asymmetric noncausal and/or nonminimum phase) 2D autoregressive moving average random field model driven by an independent and identically distributed 2D nonGaussian sequence is considered. The model is restricted to be invertible, i.e., system zeros are not allowed to lie on the unit bicircle. Three performance criteria are investigated for parameter estimation of the system parameters given only the output measurements (image pixels). The proposed criteria are functions of the higher order cumulant statistics of an inverse filter output. One of these criteria is novel and the others have been considered in past only for moving average inverses and without any analysis of their consistency. In the paper strong consistency of the proposed methods under the assumption that the system order is known is proved. The convergence of the proposed parameter estimators under overparametrization is also analyzed. Experimental results involving synthesized as well as real life textures are presented to illustrate the performance of two of the considered approaches. Experimental results of synthesis of 128/spl times/128 textures visually resembling several real life textures in the Brodatz album (and other sources) are presented.
机译:考虑由独立且均匀分布的二维非高斯序列驱动的通用(可能是非对称非因果和/或非最小相位)二维自回归移动平均随机场模型。该模型被限制为可逆的,即不允许系统零位于单位双圆上。仅给定输出测量值(图像像素),就系统参数的参数估计研究了三个性能标准。提出的标准是逆滤波器输出的高阶累积量统计的函数。这些标准之一是新颖的,而其他标准过去仅用于移动平均逆,没有对其一致性进行任何分析。本文证明了在已知系统阶数的前提下,所提方法的强一致性。还分析了在超参数化条件下所提出的参数估计量的收敛性。提出了涉及合成纹理和现实生活纹理的实验结果,以说明其中两种方法的性能。呈现了在视觉上类似于Brodatz专辑(和其他来源)中几种现实生活纹理的128 / spl次/ 128纹理合成的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号