首页> 外文期刊>IEEE Transactions on Image Processing >Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model
【24h】

Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model

机译:使用螺旋重采样,子带分解和隐马尔可夫模型的旋转和灰度变换不变纹理分类

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new texture classification algorithm that is invariant to rotation and gray-scale transformation. First, we convert two-dimensional (2-D) texture images to one-dimensional (1-D) signals by spiral resampling. Then, we use a quadrature mirror filter (QMF) bank to decompose sampled signals into subbands. In each band, we take high-order autocorrelation functions as features. Features in different bands, which form a vector sequence, are then modeled as a hidden Markov model (BMM). During classification, the unknown texture is matched against all the models and the best match is taken as the classification result. Simulations showed that the highest correct classification rate for 16 kinds of texture was 95.14%.
机译:本文提出了一种新的纹理分类算法,该算法不影响旋转和灰度变换。首先,我们通过螺旋重采样将二维(2-D)纹理图像转换为一维(1-D)信号。然后,我们使用正交镜像滤波器(QMF)库将采样信号分解为子带。在每个频带中,我们都将高阶自相关函数作为特征。然后将形成矢量序列的不同波段中的特征建模为隐马尔可夫模型(BMM)。在分类期间,将未知纹理与所有模型匹配,并以最佳匹配作为分类结果。仿真表明,16种纹理的最高正确分类率为95.14%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号