首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model
【24h】

Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model

机译:基于小波分解和隐马尔可夫模型的旋转和灰度变换不变纹理识别

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, we have presented a rotation and gray scale transform invariant texture recognition scheme using the combination of quadrature mirror filter (QMF) bank and hidden Markov model (HMM). In the first stage, the QMF bank is used as the wavelet transform to decompose the texture image into subbands. The gray scale transform invariant features derived from the statistics based on first-order distribution of gray levels are then extracted from each subband image. In the second stage, the sequence of subbands is modeled as a hidden Markov model (HMM), and one HMM is designed for each class of textures. The HMM is used to exploit the dependence among these subbands, and is able to capture the trend of changes caused by rotation. During recognition, the unknown texture is matched against all the models. The best matched model identifies the texture class. Up to 93.33% classification accuracy is reported.
机译:在这种对应关系中,我们提出了一种使用正交镜像滤波器(QMF)库和隐马尔可夫模型(HMM)组合的旋转和灰度变换不变纹理识别方案。在第一阶段,将QMF库用作小波变换,以将纹理图像分解为子带。然后从每个子带图像中提取基于灰度的一阶分布从统计信息得出的灰度变换不变特征。在第二阶段,将子带序列建模为隐马尔可夫模型(HMM),并为每一类纹理设计一个HMM。 HMM用于开发这些子带之间的依赖性,并能够捕获由旋转引起的变化趋势。在识别期间,未知纹理将与所有模型匹配。最佳匹配的模型标识纹理类别。据报道,分类精度高达93.33%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号