首页> 外文期刊>IEEE Transactions on Image Processing >Joint thresholding and quantizer selection for transform image coding: entropy-constrained analysis and applications to baseline JPEG
【24h】

Joint thresholding and quantizer selection for transform image coding: entropy-constrained analysis and applications to baseline JPEG

机译:联合阈值和量化器选择以进行变换图像编码:熵受限的分析及其对基线JPEG的应用

获取原文
获取原文并翻译 | 示例

摘要

Striving to maximize baseline (Joint Photographers Expert Group-JPEG) image quality without compromising compatibility of current JPEG decoders, we develop an image-adaptive JPEG encoding algorithm that jointly optimizes quantizer selection, coefficient "thresholding", and Huffman coding within a rate-distortion (R-D) framework. Practically speaking, our algorithm unifies two previous approaches to image-adaptive JPEG encoding: R-D optimized quantizer selection and R-D optimal thresholding. Conceptually speaking, our algorithm is a logical consequence of entropy-constrained vector quantization (ECVQ) design principles in the severely constrained instance of JPEG-compatible encoding. We explore both viewpoints: the practical, to concretely derive our algorithm, and the conceptual, to justify the claim that our algorithm approaches the best performance that a JPEG encoder can achieve. This performance includes significant objective peak signal-to-noise ratio (PSNR) improvement over previous work and at high rates gives results comparable to state-of-the-art image coders. For example, coding the Lena image at 1.0 b/pixel, our JPEG encoder achieves a PSNR performance of 39.6 dB that slightly exceeds the quoted PSNR results of Shapiro's wavelet-based zero-tree coder. Using a visually based distortion metric, we can achieve noticeable subjective improvement as well. Furthermore, our algorithm may be applied to other systems that use run-length encoding, including intraframe MPEG and subband or wavelet coding.
机译:努力在不损害当前JPEG解码器兼容性的情况下最大化基准(联合摄影师专家组JPEG)图像质量,我们开发了一种图像自适应JPEG编码算法,该算法可在速率失真内共同优化量化器选择,系数“阈值”和霍夫曼编码(RD)框架。实际上,我们的算法统一了两种先前的图像自适应JPEG编码方法:R-D优化的量化器选择和R-D最佳阈值。从概念上讲,我们的算法是在JPEG兼容编码的严格约束实例中,熵约束矢量量化(ECVQ)设计原理的逻辑结果。我们探讨了两种观点:实用地具体地提出我们的算法,以及概念上的观点以证明我们的算法接近JPEG编码器可以达到的最佳性能。该性能包括比以前的工作有明显的客观峰值信噪比(PSNR)改进,并且以高速率提供了与最新图像编码器相当的结果。例如,以1.0 b /像素编码Lena图像,我们的JPEG编码器实现了39.6 dB的PSNR性能,该性能略超过Shapiro基于小波的零树编码器引用的PSNR结果。使用基于视觉的失真度量,我们也可以实现明显的主观改进。此外,我们的算法可以应用于使用游程编码的其他系统,包括帧内MPEG和子带或小波编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号