首页> 外文期刊>IEEE Transactions on Image Processing >Target discrimination in synthetic aperture radar using artificial neural networks
【24h】

Target discrimination in synthetic aperture radar using artificial neural networks

机译:人工神经网络在合成孔径雷达中的目标识别

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses target discrimination in synthetic aperture radar (SAR) imagery using linear and nonlinear adaptive networks. Neural networks are extensively used for pattern classification but here the goal is discrimination. We show that the two applications require different cost functions. We start by analyzing with a pattern recognition perspective the two-parameter constant false alarm rate (CFAR) detector which is widely utilized as a target detector in SAR. Then we generalize its principle to construct the quadratic gamma discriminator (QGD), a nonparametrically trained classifier based on local image intensity. The linear processing element of the QCD is further extended with nonlinearities yielding a multilayer perceptron (MLP) which we call the NL-QGD (nonlinear QGD). MLPs are normally trained based on the L/sub 2/ norm. We experimentally show that the L/sub 2/ norm is not recommended to train MLPs for discriminating targets in SAR. Inspired by the Neyman-Pearson criterion, we create a cost function based on a mixed norm to weight the false alarms and the missed detections differently. Mixed norms can easily be incorporated into the backpropagation algorithm, and lead to better performance. Several other norms (L/sub 8/, cross-entropy) are applied to train the NL-QGD and all outperformed the L/sub 2/ norm when validated by receiver operating characteristics (ROC) curves. The data sets are constructed from TABILS 24 ISAR targets embedded in 7 km/sub 2/ of SAR imagery (MIT/LL mission 90).
机译:本文使用线性和非线性自适应网络解决了合成孔径雷达(SAR)图像中的目标识别问题。神经网络被广泛用于模式分类,但是这里的目标是区分。我们表明这两个应用程序需要不同的成本函数。我们首先从模式识别角度分析两参数恒定误报率(CFAR)检测器,该检测器被广泛用作SAR中的目标检测器。然后,我们概括其原理来构造二次伽玛鉴别器(QGD),这是一种基于局部图像强度的非参数训练分类器。 QCD的线性处理元素进一步扩展了非线性,从而产生了多层感知器(MLP),我们称其为NL-QGD(非线性QGD)。 MLP通常根据L / sub 2 /规范进行训练。我们通过实验表明,不建议使用L / sub 2 /范数来训练MLP来区分SAR中的目标。受Neyman-Pearson准则的启发,我们基于混合规范创建了一个成本函数,以对误警报和漏检进行不同的加权。混合规范可以轻松地纳入反向传播算法中,并带来更好的性能。通过接收器工作特性(ROC)曲线验证后,还应用了其他一些规范(L / sub 8 /,交叉熵)来训练NL-QGD,并且所有性能均优于L / sub 2 /规范。数据集由嵌入在7 km / sub 2 / SAR图像中的TABILS 24 ISAR目标构成(MIT / LL任务90)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号