首页> 外文期刊>Concurrency and computation: practice and experience >Ship-iceberg discrimination from Sentinel-1 synthetic aperture radar data using parallel convolutional neural network
【24h】

Ship-iceberg discrimination from Sentinel-1 synthetic aperture radar data using parallel convolutional neural network

机译:使用并行卷积神经网络从Sentinel-1合成孔径雷达数据的Ship-iceberg歧视

获取原文
获取原文并翻译 | 示例

摘要

Ships and icebergs are similar in size and intensity in SAR images, so it is difficult to distinguish them in remote sensing images. Deep learning is a technique based on neural networks, which has played an important role in image information processing. In order to address the challenge of ship and iceberg classification, we present a convolutional neural network (CNN) based classification method for iceberg and ship discrimination from Sentinel-1 SAR images with different polarizations and incidence angles. The method is based on the fixed constant false alarm rate (CFAR) detector and the CNN model has three input channels, then the model was trained using parallel algorithm. The CNN is trained using 1443 images and tested using 161 images. The CNN model is also compared with support vector machine (SVM) and k nearest neighbors (kNN) using the same dataset. Comparison shows the CNN-based method performs the best, and it achieved a validation accuracy of 96%.
机译:船舶和冰山的尺寸和强度在SAR图像中类似,因此很难将它们区分开在遥感图像中。 深度学习是一种基于神经网络的技术,它在图像信息处理中发挥了重要作用。 为了解决船舶和冰山分类的挑战,我们展示了一种基于卷积神经网络(CNN)的冰山分类方法,以及具有不同偏振的哨射-1 SAR图像的船舶辨别。 该方法基于固定常量误报率(CFAR)检测器,CNN型号具有三个输入通道,然后使用并行算法训练模型。 使用1443图像培训CNN并使用161图像进行测试。 CNN模型也与使用相同数据集的支持向量机(SVM)和K最近邻居(KNN)进行比较。 比较显示了基于CNN的方法执行最佳,并且它实现了96%的验证精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号