首页> 外文期刊>IEEE Transactions on Image Processing >Object classification in 3-D images using alpha-trimmed mean radial basis function network
【24h】

Object classification in 3-D images using alpha-trimmed mean radial basis function network

机译:使用alpha修剪的平均径向基函数网络对3D图像中的对象进行分类

获取原文
获取原文并翻译 | 示例

摘要

We propose a pattern classification based approach for simultaneous three-dimensional (3-D) object modeling and segmentation in image volumes. The 3-D objects are described as a set of overlapping ellipsoids. The segmentation relies on the geometrical model and graylevel statistics. The characteristic parameters of the ellipsoids and of the graylevel statistics are embedded in a radial basis function (RBF) network and they are found by means of unsupervised training. A new robust training algorithm for RBF networks based on /spl alpha/-trimmed mean statistics is employed in this study. The extension of the Hough transform algorithm in the 3-D space by employing a spherical coordinate system is used for ellipsoidal center estimation. We study the performance of the proposed algorithm and we present results when segmenting a stack of microscopy images.
机译:我们提出了一种基于模式分类的方法,用于同时进行三维(3-D)对象建模和图像体积分割。将3-D对象描述为一组重叠的椭圆体。分割依赖于几何模型和灰度统计。椭球和灰度统计的特征参数被嵌入到径向基函数(RBF)网络中,并且可以通过无监督训练来找到它们。在这项研究中,基于/ spl alpha / -trimmed均值统计的RBF网络鲁棒训练算法被采用。通过使用球面坐标系在3-D空间中扩展Hough变换算法,用于椭圆中心估计。我们研究了所提出算法的性能,并在分割一堆显微镜图像时给出了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号