首页> 外文期刊>IEEE Transactions on Image Processing >Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient
【24h】

Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient

机译:通过使用随机梯度优化互信息来对遥感影像进行多分辨率配准

获取原文
获取原文并翻译 | 示例

摘要

Image registration is the process by which we determine a transformation that provides the most accurate match between two images. The search for the matching transformation can be automated with the use of a suitable metric, but it can be very time-consuming and tedious. We introduce a registration algorithm that combines a simple yet powerful search strategy based on a stochastic gradient with two similarity measures, correlation and mutual information, together with a wavelet-based multiresolution pyramid. We limit our study to pairs of images, which are misaligned by rotation and/or translation, and present two main results. First, we demonstrate that, in our application, mutual information may be better suited for sub-pixel registration as it produces consistently sharper optimum peaks than correlation. Then, we show that the stochastic gradient search combined with either measure produces accurate results when applied to synthetic data, as well as to multitemporal or multisensor collections of satellite data. Mutual information is generally found to optimize with one-third the number of iterations required by correlation. Results also show that a multiresolution implementation of the algorithm yields significant improvements in terms of both speed and robustness over a single-resolution implementation.
机译:图像配准是我们确定可在两张图像之间提供最精确匹配的转换的过程。可以使用适当的度量来自动搜索匹配的转换,但是这非常耗时且乏味。我们介绍了一种注册算法,该算法结合了基于随机梯度的简单而强大的搜索策略以及两个相似性度量(相关性和互信息)以及基于小波的多分辨率金字塔。我们将研究限于成对的图像,这些图像因旋转和/或平移而错位,并给出两个主要结果。首先,我们证明,在我们的应用中,互信息可能会比相关性始终产生更清晰的最佳峰值,因此可能更适合于子像素配准。然后,我们表明,将随机梯度搜索与这两种方法结合使用时,将其应用于合成数据以及卫星数据的多时间或多传感器集合时,都可以得出准确的结果。通常发现互信息可以以相关性所需的迭代次数的三分之一进行优化。结果还表明,与单分辨率实现相比,该算法的多分辨率实现在速度和鲁棒性方面均产生了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号