首页> 外文期刊>IEEE Transactions on Image Processing >Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from X-ray tomography
【24h】

Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from X-ray tomography

机译:离散3D对象的法线和表面积的自适应估计:应用于X射线断层扫描的积雪二进制数据

获取原文
获取原文并翻译 | 示例

摘要

Estimating the normal vector field on the boundary of discrete three-dimensional objects is essential for rendering and image measurement problems. Most of the existing algorithms do not provide an accurate determination of the normal vector field for shapes that present edges. Here, we propose a new and simple computational method in order to obtain accurate results on all types of shapes, whatever their local convexity degree. The presented method is based on the gradient vector field analysis of the object distance map. This vector field is adaptively filtered around each surface voxel using angle and symmetry criteria so that as many relevant contributions as possible are accounted for. This optimizes the smoothing of digitization effects while preserving relevant details of the processed numerical object. Thanks to the precise normal field obtained, a projection method can be proposed to immediately derive the surface area from a raw discrete object. An empirical justification of the validity of such an algorithm in the continuous limit is also provided. Some results on simulated data and snow images from X-ray tomography are presented, compared to the Marching Cubes and Convex Hull results, and discussed.
机译:估计离散三维对象边界上的法向矢量场对于渲染和图像测量问题至关重要。现有的大多数算法都无法为呈现边缘的形状提供对法向矢量场的准确确定。在这里,我们提出了一种新的简单计算方法,以便在所有形状的形状上获得准确的结果,而无论它们的局部凸度如何。所提出的方法基于物体距离图的梯度矢量场分析。该矢量场使用角度和对称性标准在每个表面体素周围进行自适应滤波,以便考虑尽可能多的相关贡献。这样可以优化数字化效果的平滑度,同时保留处理后的数字对象的相关详细信息。由于获得了精确的法向场,因此可以提出一种投影方法,以立即从原始离散对象中得出表面积。还提供了在连续极限中这种算法有效性的经验证明。提出了一些有关X射线断层扫描的模拟数据和积雪图像的结果,并将其与Marching Cubes和Convex Hull结果进行了比较并进行了讨论。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号