首页> 外文期刊>IEEE Transactions on Image Processing >Ant Colony Optimization for Image Regularization Based on a Nonstationary Markov Modeling
【24h】

Ant Colony Optimization for Image Regularization Based on a Nonstationary Markov Modeling

机译:基于非平稳马尔可夫模型的蚁群算法用于图像正则化

获取原文
获取原文并翻译 | 示例

摘要

Ant colony optimization (ACO) has been proposed as a promising tool for regularization in image classification. The algorithm is applied here in a different way than the classical transposition of the graph color affectation problem. The ants collect information through the image, from one pixel to the others. The choice of the path is a function of the pixel label, favoring paths within the same image segment. We show that this corresponds to an automatic adaptation of the neighborhood to the segment form, and that it outperforms the fixed-form neighborhood used in classical Markov random field regularization techniques. The performance of this new approach is illustrated on a simulated image and on actual remote sensing images
机译:蚁群优化(ACO)已被提出作为图像分类中正则化的有前途的工具。该算法在这里以与图形颜色影响问题的经典转置不同的方式应用。蚂蚁通过图像从一个像素到另一个像素收集信息。路径的选择取决于像素标签,有利于同一图像段内的路径。我们表明,这对应于邻域对分段形式的自动适应,并且它优于经典马尔可夫随机场正则化技术中使用的固定形式邻域。在仿真图像和实际遥感图像上都说明了这种新方法的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号