首页> 外文期刊>IEEE Transactions on Image Processing >Face Verification With Balanced Thresholds
【24h】

Face Verification With Balanced Thresholds

机译:具有平衡阈值的人脸验证

获取原文
获取原文并翻译 | 示例

摘要

The process of face verification is guided by a prelearned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification
机译:面部验证的过程以预先学习的全局阈值为指导,但是该阈值通常与特定于类别的最佳阈值不一致。因此,在模型学习阶段追求特定于类的阈值的平衡是有益的。在本文中,我们提出了一种新的降维算法,该算法针对验证任务量身定制,可确保阈值平衡。这通过以下方面实现。首先,通过使用仿射变换矩阵而不是传统的投影矩阵来保证降维的可行性,因此,我们将本文提出的算法称为阈值平衡变换(TBT)。然后,优化约束为正交矩阵和对角矩阵乘积的仿射变换矩阵,以迭代的方式提高阈值平衡和分类能力。与直接从人脸识别文献中移植的大多数人脸验证算法不同,TBT是专为人脸验证而设计的,它阐明了这两个任务之间的内在区别。在三个基准人脸数据库上进行的实验表明,TBT大大优于用于人脸验证的最新子空间技术

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号