首页> 外文期刊>IEEE Transactions on Image Processing >Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising
【24h】

Iterative Regularization and Nonlinear Inverse Scale Space Applied to Wavelet-Based Denoising

机译:迭代正则化和非线性逆尺度空间在基于小波的去噪中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we generalize the iterative regularization method and the inverse scale space method, recently developed for total-variation (TV) based image restoration, to wavelet-based image restoration. This continues our earlier joint work with others where we applied these techniques to variational-based image restoration, obtaining significant improvement over the Rudin-Osher-Fatemi TV-based restoration. Here, we apply these techniques to soft shrinkage and obtain the somewhat surprising result that a) the iterative procedure applied to soft shrinkage gives firm shrinkage and converges to hard shrinkage and b) that these procedures enhance the noise-removal capability both theoretically, in the sense of generalized Bregman distance, and for some examples, experimentally, in terms of the signal-to-noise ratio, leaving less signal in the residual
机译:在本文中,我们将迭代正则化方法和反比例尺空间方法(最近针对基于全变差(TV)的图像恢复)推广到基于小波的图像恢复。这将继续我们与其他人的早期联合工作,在这些工作中,我们将这些技术应用于基于变分的图像恢复,与基于Rudin-Osher-Fatemi TV的恢复相比有了显着改进。在这里,我们将这些技术应用于软收缩,并获得一些令人惊讶的结果,即a)用于软收缩的迭代过程可产生牢固的收缩并收敛到硬收缩,并且b)从理论上讲,这些过程都增强了降噪能力Bregman距离的广义意义,在某些示例中,通过实验,就信噪比而言,在残差中留下较少的信号

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号