首页> 外文期刊>IEEE Transactions on Image Processing >Robust Rate-Control for Wavelet-Based Image Coding via Conditional Probability Models
【24h】

Robust Rate-Control for Wavelet-Based Image Coding via Conditional Probability Models

机译:基于条件概率模型的基于小波的图像编码的鲁棒速率控制

获取原文
获取原文并翻译 | 示例

摘要

Real-time rate-control for wavelet image coding requires characterization of the rate required to code quantized wavelet data. An ideal robust solution can be used with any wavelet coder and any quantization scheme. A large number of wavelet quantization schemes (perceptual and otherwise) are based on scalar dead-zone quantization of wavelet coefficients. A key to performing rate-control is, thus, fast, accurate characterization of the relationship between rate and quantization step size, the R-Q curve. A solution is presented using two invocations of the coder that estimates the slope of each R-Q curve via probability modeling. The method is robust to choices of probability models, quantization schemes and wavelet coders. Because of extreme robustness to probability modeling, a fast approximation to spatially adaptive probability modeling can be used in the solution, as well. With respect to achieving a target rate, the proposed approach and associated fast approximation yield average percentage errors around 0.5% and 1.0% on images in the test set. By comparison, 2-coding-pass rho-domain modeling yields errors around 2.0%, and post-compression rate-distortion optimization yields average errors of around 1.0% at rates below 0.5 bits-per-pixel (bpp) that decrease down to about 0.5% at 1.0 bpp; both methods exhibit more competitive performance on the larger images. The proposed method and fast approximation approach are also similar in speed to the other state-of-the-art methods. In addition to possessing speed and accuracy, the proposed method does not require any training and can maintain precise control over wavelet step sizes, which adds flexibility to a wavelet-based image-coding system
机译:小波图像编码的实时速率控制需要表征对量化的小波数据进行编码所需的速率。理想的鲁棒解决方案可以与任何小波编码器和任何量化方案一起使用。大量的小波量化方案(感知的和其他的)都基于小波系数的标量死区量化。因此,执行速率控制的关键是快速,准确地表征速率与量化步长之间的关系(R-Q曲线)。提出了一种使用编码器的两次调用的解决方案,该两次调用通过概率建模来估算每个R-Q曲线的斜率。该方法对于概率模型,量化方案和小波编码器的选择是鲁棒的。由于概率模型具有极强的鲁棒性,因此在解决方案中也可以使用对空间自适应概率模型的快速近似。关于达到目标速率,所提出的方法和相关的快速逼近会在测试集中的图像上产生约0.5%和1.0%的平均百分比误差。相比之下,经过2编码通道的rho域建模会产生大约2.0%的误差,而压缩后速率失真优化会以低于0.5位/像素(bpp)的速率产生大约1.0%的平均误差,并降低到大约1.0 bpp时为0.5%;两种方法在较大的图像上均显示出更具竞争力的性能。所提出的方法和快速逼近方法在速度上也与其他现有技术类似。除了具有速度和准确性外,所提出的方法不需要任何训练,并且可以保持对小波步长的精确控制,这为基于小波的图像编码系统增加了灵活性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号