首页> 外文期刊>IEEE Transactions on Image Processing >Vehicle Detection Using Normalized Color and Edge Map
【24h】

Vehicle Detection Using Normalized Color and Edge Map

机译:使用归一化颜色和边缘图的车辆检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel vehicle detection approach for detecting vehicles from static images using color and edges. Different from traditional methods, which use motion features to detect vehicles, this method introduces a new color transform model to find important "vehicle color" for quickly locating possible vehicle candidates. Since vehicles have various colors under different weather and lighting conditions, seldom works were proposed for the detection of vehicles using colors. The proposed new color transform model has excellent capabilities to identify vehicle pixels from background, even though the pixels are lighted under varying illuminations. After finding possible vehicle candidates, three important features, including corners, edge maps, and coefficients of wavelet transforms, are used for constructing a cascade multichannel classifier. According to this classifier, an effective scanning can be performed to verify all possible candidates quickly. The scanning process can be quickly achieved because most background pixels are eliminated in advance by the color feature. Experimental results show that the integration of global color features and local edge features is powerful in the detection of vehicles. The average accuracy rate of vehicle detection is 94.9%
机译:本文提出了一种新颖的车辆检测方法,可使用颜色和边缘从静态图像中检测车辆。与使用运动特征检测车辆的传统方法不同,此方法引入了一种新的颜色转换模型,以找到重要的“车辆颜色”,以快速找到可能的候选车辆。由于车辆在不同的天气和光照条件下具有多种颜色,因此很少提出使用颜色来检测车辆的工作。所提出的新颜色变换模型具有出色的能力,可以从背景中识别车辆像素,即使像素在变化的照明条件下被照亮也是如此。在找到可能的车辆候选者之后,使用三个重要特征(包括拐角,边缘图和小波变换的系数)来构建级联多通道分类器。根据该分类器,可以执行有效的扫描以快速验证所有可能的候选者。由于大多数背景像素已预先通过颜色功能消除,因此可以快速实现扫描过程。实验结果表明,全局颜色特征和局部边缘特征的集成在车辆检测中很强大。车辆检测的平均准确率为94.9%

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号