首页> 外文期刊>IEEE Transactions on Image Processing >A MAP Approach for Joint Motion Estimation, Segmentation, and Super Resolution
【24h】

A MAP Approach for Joint Motion Estimation, Segmentation, and Super Resolution

机译:一种用于联合运动估计,分割和超分辨率的MAP方法

获取原文
获取原文并翻译 | 示例

摘要

Super resolution image reconstruction allows the recovery of a high-resolution (HR) image from several low-resolution images that are noisy, blurred, and down sampled. In this paper, we present a joint formulation for a complex super-resolution problem in which the scenes contain multiple independently moving objects. This formulation is built upon the maximum a posteriori (MAP) framework, which judiciously combines motion estimation, segmentation, and super resolution together. A cyclic coordinate descent optimization procedure is used to solve the MAP formulation, in which the motion fields, segmentation fields, and HR images are found in an alternate manner given the two others, respectively. Specifically, the gradient-based methods are employed to solve the HR image and motion fields, and an iterated conditional mode optimization method to obtain the segmentation fields. The proposed algorithm has been tested using a synthetic image sequence, the "Mobile and Calendar" sequence, and the original "Motorcycle and Car" sequence. The experiment results and error analyses verify the efficacy of this algorithm
机译:超分辨率图像重建可从嘈杂,模糊和下采样的多个低分辨率图像中恢复高分辨率(HR)图像。在本文中,我们提出了一个联合解决方案,用于解决其中场景包含多个独立移动对象的复杂超分辨率问题。此公式建立在最大后验(MAP)框架的基础上,该框架明智地将运动估计,分割和超分辨率组合在一起。循环坐标下降优化程序用于求解MAP公式,在该公式中,分别以给定其他两个的替代方式找到了运动场,分割场和HR图像。具体而言,采用基于梯度的方法求解HR图像和运动场,采用迭代条件模式优化方法获得分割场。已使用合成图像序列,“移动和日历”序列以及原始的“摩托车和汽车”序列对提出的算法进行了测试。实验结果和误差分析证明了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号