首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >A Joint Approach to Global Motion Estimation and Motion Segmentation From a Coarsely Sampled Motion Vector Field
【24h】

A Joint Approach to Global Motion Estimation and Motion Segmentation From a Coarsely Sampled Motion Vector Field

机译:一种从粗采样运动矢量场进行全局运动估计和运动分割的联合方法

获取原文
获取原文并翻译 | 示例

摘要

In many content-based video processing systems, the presence of moving objects limits the accuracy of global motion estimation (GME). On the other hand, the inaccuracy of global motion parameter estimates affects the performance of motion segmentation. In this paper, we introduce a procedure for simultaneous object segmentation and GME from a coarsely sampled (i.e., block-based) motion vector (MV) field. The procedure starts with removing MV outliers from the MV field, and then performs GME to obtain an estimate of global motion parameters. Using these estimates, global motion is removed from the MV field, and moving region segmentation is performed on this compensated MV field. MVs in the moving regions are treated as outliers in the context of GME in the next round of processing. Iterating between GME and motion segmentation helps improve both GME and segmentation accuracy. Experimental results demonstrate the advantage of the proposed approach over state-of-the-art methods on both synthetic motion fields and MVs from real video sequences.
机译:在许多基于内容的视频处理系统中,运动对象的存在限制了全局运动估计(GME)的准确性。另一方面,全局运动参数估计的不准确性会影响运动分割的性能。在本文中,我们介绍了一种从粗略采样(即基于块的)运动矢量(MV)字段进行同时对象分割和GME的过程。该过程首先从MV字段中删除MV离群值,然后执行GME以获取全局运动参数的估计值。使用这些估计,可以从MV场中删除全局运动,并在此补偿的MV场上执行运动区域分割。在下一轮处理中,将移动区域中的MV在GME中视为异常值。在GME和运动细分之间进行迭代有助于提高GME和细分精度。实验结果证明了该方法在合成运动场和真实视频序列的MV上均优于最新方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号