首页> 美国卫生研究院文献>other >Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach
【2h】

Insect-Inspired Self-Motion Estimation with Dense Flow Fields—An Adaptive Matched Filter Approach

机译:具有密集流场的昆虫启发式自运动估计—自适应匹配滤波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.
机译:对于技术和生物系统而言,自我运动的控制是一项基本但复杂的任务。已经提出了各种算法,这些算法允许从眼睛上的光流估计自我运动。我们表明,在一定条件下,可以从两种技术上完全不同的方法来解决这一任务,一种是在技术上,另一种是在生物学上受到启发。自我运动的一种估计是基于匹配的滤波方法。它已被开发来描述蝇脑中运动敏感细胞的功能。另一个估算器,即Koenderink和van Doorn(KvD)算法,是在技术背景下得出的。如果可以假定到环境中物体的距离是已知的,则两个估计量是线性且等效的,但以不同的数学形式表示。但是,在大多数情况下,假设距离是已知的是不现实的。因此,需要与自运动参数平行地确定环境的深度结构,并且导致非线性问题。结果表明,KvD算法使用的标准最小均方方法导致了估计量的偏差。我们派生出对该算法的修改,以消除偏差并通过数值仿真证明其改进的性能。对于自我运动估计,类似于许多飞行昆虫,具有球形视野是有益的。我们表明,在这种情况下,可以简化从光流导出的环境深度结构的表示。基于此结果,我们为具有近球形视野的系统开发了一种自适应匹配滤波器方法。然后,在自我运动过程中只需记住和更新有关环境的八个参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号