首页> 外文期刊>Image Processing, IEEE Transactions on >Wavelet-Based SAR Image Despeckling and Information Extraction, Using Particle Filter
【24h】

Wavelet-Based SAR Image Despeckling and Information Extraction, Using Particle Filter

机译:基于小波的SAR图像去斑和信息提取

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new-wavelet-based synthetic aperture radar (SAR) image despeckling algorithm using the sequential Monte Carlo method. A model-based Bayesian approach is proposed. This paper presents two methods for SAR image despeckling. The first method, called WGGPF, models a prior with Generalized Gaussian (GG) probability density function (pdf) and the second method, called WGMPF, models prior with a Generalized Gaussian Markov random field (GGMRF). The likelihood pdf is modeled using a Gaussian pdf. The GGMRF model is used because it enables texture parameter estimation. The prior is modeled using GG pdf, when texture parameters are not needed. A particle filter is used for drawing particles from the prior for different shape parameters of GG pdf. When the GGMRF prior is used, the particles are drawn from prior in order to estimate noise-free wavelet coefficients and for those coefficients the texture parameter is changed in order to obtain the best textural parameters. The texture parameters are changed for a predefined set of shape parameters of GGMRF. The particles with the highest weights represents the final noise-free estimate with corresponding textural parameters. The despeckling algorithms are compared with the state-of-the-art methods using synthetic and real SAR data. The experimental results show that the proposed despeckling algorithms efficiently remove noise and proposed methods are comparable with the state-of-the-art methods regarding objective measurements. The proposed WGMPF preserves textures of the real, high-resolution SAR images well.
机译:提出了一种基于序列小蒙特卡罗方法的基于小波的合成孔径雷达(SAR)图像去斑算法。提出了一种基于模型的贝叶斯方法。本文提出了两种SAR图像去斑方法。第一种方法称为WGGPF,​​它使用广义高斯(GG)概率密度函数(pdf)对先验模型进行建模,第二种方法称为WGMPF,对广义高斯马尔可夫随机场(GGMRF)进行建模。可能性pdf使用高斯pdf建模。使用GGMRF模型是因为它支持纹理参数估计。当不需要纹理参数时,先验模型使用GG pdf建模。对于GG pdf的不同形状参数,使用粒子过滤器从以前提取粒子。当使用GGMRF先验时,从先验中提取粒子以估计无噪声的小波系数,并且对于那些系数,更改纹理参数以获得最佳纹理参数。针对GGMRF的一组预定义的形状参数更改纹理参数。权重最高的粒子表示具有相应纹理参数的最终无噪声估计。使用合成和实际SAR数据将去斑点算法与最新技术进行比较。实验结果表明,所提出的去斑点算法可以有效地去除噪声,并且所提出的方法与关于客观测量的最新方法具有可比性。提出的WGMPF可以很好地保留真实的高分辨率SAR图像的纹理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号