首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Wavelet-Based Despeckling of SAR Images Using Gauss–Markov Random Fields
【24h】

Wavelet-Based Despeckling of SAR Images Using Gauss–Markov Random Fields

机译:高斯-马尔可夫随机场基于小波的SAR图像去斑

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a wavelet-based speckle-removing algorithm is represented and tested on synthetic aperture radar (SAR) images. The SAR image is first transformed using a dyadic wavelet transform. The noise in the wavelet-transformed image is modeled as an additive signal-dependent noise with Gaussian distribution. The distribution of a noise-free image in a wavelet domain is modeled as a generalized Gauss-Markov random field (GGMRF). An unsupervised stochastic model-based approach to image denoising is represented. If the observed area is homogeneous, the parameters of the Gaussian distribution and GGMRFs are estimated from incomplete data using mixtures of wavelet coefficients. An expectation-maximization algorithm is used to estimate the parameters of both noisy and noise-free images. The unknown parameters are estimated using image and noise models that are defined in the wavelet domain for heterogeneous areas. Different inter-and intrascale dependences of wavelet coefficients were used to estimate the unknown parameters. The represented wavelet-based method efficiently removes noise from SAR images.
机译:本文提出了一种基于小波的斑点去除算法,并在合成孔径雷达(SAR)图像上进行了测试。首先使用二进小波变换对SAR图像进行变换。小波变换图像中的噪声被建模为具有高斯分布的依赖于信号的加性噪声​​。小波域中无噪声图像的分布被建模为广义高斯-马尔可夫随机场(GGMRF)。表示了一种基于无监督的随机模型的图像去噪方法。如果观测区域是均匀的,则使用小波系数的混合从不完整数据中估计高斯分布和GGMRF的参数。期望最大化算法用于估计有噪和无噪图像的参数。使用在小波域中为异构区域定义的图像和噪声模型来估计未知参数。小波系数在标度内和标度内的不同依赖性用于估计未知参数。所表示的基于小波的方法有效地去除了SAR图像中的噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号