首页> 外文期刊>IEEE Transactions on Image Processing >A Sparsity-Enforcing Method for Learning Face Features
【24h】

A Sparsity-Enforcing Method for Learning Face Features

机译:一种稀疏性增强的人脸特征学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new trainable system for selecting face features from over-complete dictionaries of image measurements. The starting point is an iterative thresholding algorithm which provides sparse solutions to linear systems of equations. Although the proposed methodology is quite general and could be applied to various image classification tasks, we focus here on the case study of face and eyes detection. For our initial representation, we adopt rectangular features in order to allow straightforward comparisons with existing techniques. For computational efficiency and memory saving requirements, instead of implementing the full optimization scheme on tenths of thousands of features, we propose a three-stage architecture which consists of finding first intermediate solutions to smaller size optimization problems, then merging the obtained results, and next applying further selection procedures. The devised system requires the solution of a number of independent problems, and, hence, the necessary computations could be implemented in parallel. Experimental results obtained on both benchmark and newly acquired face and eyes images indicate that our method is a serious competitor to other feature selection schemes recently popularized in computer vision for dealing with problems of real-time object detection. A major advantage of the proposed system is that it performs well even with relatively small training sets.
机译:在本文中,我们提出了一种新的可训练系统,用于从图像测量的过度字典中选择人脸特征。起点是迭代阈值算法,该算法为线性方程组提供稀疏解。尽管所提出的方法相当笼统,并且可以应用于各种图像分类任务,但是我们在这里集中于人脸和眼睛检测的案例研究。对于我们的初始表示,我们采用矩形特征,以便可以与现有技术进行直接比较。为了满足计算效率和节省内存的需求,我们提出了一种三阶段体系结构,该结构包括对第一个较小的优化问题找到第一个中间解决方案,然后合并所获得的结果,然后再提出一个三阶段的体系结构,而不是针对成千上万的功能实施完整的优化方案应用进一步的选择程序。所设计的系统需要解决许多独立的问题,因此,可以并行实现必要的计算。在基准图像和新获得的面部和眼睛图像上获得的实验结果表明,该方法是计算机视觉中最近用于处理实时物体检测问题的其他特征选择方案的重要竞争者。所提出的系统的主要优点是即使在相对较小的训练集的情况下它也表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号