首页> 外文期刊>Image Processing, IEEE Transactions on >Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields
【24h】

Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields

机译:使用成本敏感的支持向量机和条件随机场的多光谱MRI对前列腺癌的定位

获取原文
获取原文并翻译 | 示例

摘要

Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Therefore, in vivo imaging plays an important role for the detection and treatment of the disease. Accurate prostate cancer localization with noninvasive imaging can be used to guide biopsy, radiotheraphy, and surgery as well as to monitor disease progression. Magnetic resonance imaging (MRI) performed with an endorectal coil provides higher prostate cancer localization accuracy, when compared to transrectal ultrasound (TRUS). However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intraobserver variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this study presents an automated localization method using cost-sensitive support vector machines (SVMs) and shows that this method results in improved localization accuracy than classical SVM. Additionally, we develop a new segmentation method by combining conditional random fields (CRF) with a cost-sensitive framework and show that our method further improves cost-sensitive SVM results by incorporating spatial information. We test SVM, cost-sensitive SVM, and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced methods such as cost-sensitive SVM as well as the proposed cost-sensitive CRF can boost the per-n-nformance significantly when compared to SVM.
机译:在美国,前列腺癌是导致癌症死亡的主要原因。幸运的是,早期诊断患者的生存率相对较高。因此,体内成像对于疾病的检测和治疗起着重要的作用。借助无创成像技术对前列腺癌进行精确定位,可用于指导活检,放射治疗和手术,以及监测疾病的进展。与经直肠超声(TRUS)相比,使用直肠内线圈进行的磁共振成像(MRI)可提供更高的前列腺癌定位精度。然而,一般而言,单一类型的MRI不足以实现可靠的肿瘤定位。作为替代,多光谱MRI,即使用多个MRI衍生的数据集已经成为一种有前途的无创成像技术,用于前列腺癌的定位。但是,几乎所有研究都是针对人类读者的。对于人类读者而言,观察者之间和观察者之间存在很大的变异性,并且人类很难分析多光谱MRI的大型数据集。为了解决这些问题,本研究提出了一种使用成本敏感的支持向量机(SVM)的自动定位方法,并表明与传统的SVM相比,该方法可提高定位精度。此外,我们通过将条件随机字段(CRF)与成本敏感的框架相结合,开发了一种新的细分方法,并表明我们的方法通过合并空间信息进一步提高了成本敏感的SVM结果。我们在从21位经活检证实的癌症患者获得的多光谱MRI数据集上测试SVM,成本敏感型SVM和建议的成本敏感型CRF。我们的结果表明,与单张MR图像相比,多光谱MRI有助于提高前列腺癌定位的准确性;与SVM相比,使用成本敏感型SVM和建议的成本敏感型CRF等先进方法可以显着提高每n性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号