首页> 外文期刊>Image Processing, IEEE Transactions on >Biased Discriminant Euclidean Embedding for Content-Based Image Retrieval
【24h】

Biased Discriminant Euclidean Embedding for Content-Based Image Retrieval

机译:基于内容的图像检索有偏判别欧氏嵌入

获取原文
获取原文并翻译 | 示例

摘要

With many potential multimedia applications, content-based image retrieval (CBIR) has recently gained more attention for image management and web search. A wide variety of relevance feedback (RF) algorithms have been developed in recent years to improve the performance of CBIR systems. These RF algorithms capture user's preferences and bridge the semantic gap. However, there is still a big room to further the RF performance, because the popular RF algorithms ignore the manifold structure of image low-level visual features. In this paper, we propose the biased discriminative Euclidean embedding (BDEE) which parameterises samples in the original high-dimensional ambient space to discover the intrinsic coordinate of image low-level visual features. BDEE precisely models both the intraclass geometry and interclass discrimination and never meets the undersampled problem. To consider unlabelled samples, a manifold regularization-based item is introduced and combined with BDEE to form the semi-supervised BDEE, or semi-BDEE for short. To justify the effectiveness of the proposed BDEE and semi-BDEE, we compare them against the conventional RF algorithms and show a significant improvement in terms of accuracy and stability based on a subset of the Corel image gallery.
机译:在许多潜在的多媒体应用程序中,基于内容的图像检索(CBIR)最近在图像管理和Web搜索中得到了越来越多的关注。近年来,已经开发了各种各样的相关性反馈(RF)算法来改善CBIR系统的性能。这些RF算法捕获用户的偏好并弥合语义鸿沟。但是,由于流行的RF算法忽略了图像低级视觉特征的多种结构,因此仍有进一步提高RF性能的空间。在本文中,我们提出了有偏判别的欧几里德嵌入(BDEE),该参数化原始高维环境空间中的样本参数,以发现图像低层视觉特征的内在坐标。 BDEE精确地建模了类内几何和类间区分,并且从未遇到欠采样问题。为了考虑未标记的样本,引入了基于流形正则化的项目并将其与BDEE结合以形成半监督的BDEE,或简称为半BDEE。为了证明所提出的BDEE和Semi-BDEE的有效性,我们将它们与传统的RF算法进行了比较,并基于Corel图片库的子集显示了准确性和稳定性方面的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号