首页> 外文期刊>Image Processing, IEEE Transactions on >Human Motion Tracking by Temporal-Spatial Local Gaussian Process Experts
【24h】

Human Motion Tracking by Temporal-Spatial Local Gaussian Process Experts

机译:时空局部高斯过程专家的人体运动跟踪

获取原文
获取原文并翻译 | 示例

摘要

Human pose estimation via motion tracking systems can be considered as a regression problem within a discriminative framework. It is always a challenging task to model the mapping from observation space to state space because of the high-dimensional characteristic in the multimodal conditional distribution. In order to build the mapping, existing techniques usually involve a large set of training samples in the learning process which are limited in their capability to deal with multimodality. We propose, in this work, a novel online sparse Gaussian Process (GP) regression model to recover 3-D human motion in monocular videos. Particularly, we investigate the fact that for a given test input, its output is mainly determined by the training samples potentially residing in its local neighborhood and defined in the unified input-output space. This leads to a local mixture GP experts system composed of different local GP experts, each of which dominates a mapping behavior with the specific covariance function adapting to a local region. To handle the multimodality, we combine both temporal and spatial information therefore to obtain two categories of local experts. The temporal and spatial experts are integrated into a seamless hybrid system, which is automatically self-initialized and robust for visual tracking of nonlinear human motion. Learning and inference are extremely efficient as all the local experts are defined online within very small neighborhoods. Extensive experiments on two real-world databases, HumanEva and PEAR, demonstrate the effectiveness of our proposed model, which significantly improve the performance of existing models.
机译:通过运动跟踪系统进行的人体姿势估计可被视为判别框架内的回归问题。由于多峰条件分布中的高维特征,对从观察空间到状态空间的映射进行建模始终是一项艰巨的任务。为了建立映射,现有技术通常在学习过程中涉及大量训练样本,这些样本在处理多模态的能力方面受到限制。我们在这项工作中提出了一种新颖的在线稀疏高斯过程(GP)回归模型,以恢复单眼视频中的3D人体运动。特别是,我们调查以下事实:对于给定的测试输入,其输出主要由可能驻留在其本地附近并定义在统一输入输出空间中的训练样本确定。这导致了一个由不同的本地GP专家组成的本地混合GP专家系统,每个专家系统都以特定的协方差函数适应本地区域来主导映射行为。为了处理多模式问题,我们将时空信息结合在一起,从而获得两类本地专家。时空专家被集成到一个无缝的混合系统中,该系统自动进行自我初始化,并且鲁棒性强,可以直观地跟踪非线性人体运动。由于所有本地专家都是在非常小的社区内在线定义的,因此学习和推理非常高效。在两个真实世界的数据库HumanEva和PEAR上进行的大量实验证明了我们提出的模型的有效性,从而显着提高了现有模型的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号