首页> 外文期刊>Image Processing, IEEE Transactions on >Online Sparse Gaussian Process Regression and Its Applications
【24h】

Online Sparse Gaussian Process Regression and Its Applications

机译:在线稀疏高斯过程回归及其应用

获取原文
获取原文并翻译 | 示例

摘要

We present a new Gaussian process (GP) inference algorithm, called online sparse matrix Gaussian processes (OSMGP), and demonstrate its merits by applying it to the problems of head pose estimation and visual tracking. The OSMGP is based upon the observation that for kernels with local support, the Gram matrix is typically sparse. Maintaining and updating the sparse Cholesky factor of the Gram matrix can be done efficiently using Givens rotations. This leads to an exact, online algorithm whose update time scales linearly with the size of the Gram matrix. Further, we provide a method for constant time operation of the OSMGP using matrix downdates. The downdates maintain the Cholesky factor at a constant size by removing certain rows and columns corresponding to discarded training examples. We demonstrate that, using these matrix downdates, online hyperparameter estimation can be included at cost linear in the number of total training examples. We describe a robust appearance-based head pose estimation system based upon the OSMGP. Numerous experiments and comparisons with existing methods using a large dataset system demonstrate the efficiency and accuracy of our system. Further, to showcase the applicability of OSMGP to a wide variety of problems, we also describe a regression-based visual tracking method. Experiments show that our OSMGP algorithm generalizes well using online learning.
机译:我们提出了一种新的高斯过程(GP)推理算法,称为在线稀疏矩阵高斯过程(OSMGP),并通过将其应用于头部姿势估计和视觉跟踪问题来证明其优点。 OSMGP基于以下观察:对于具有本地支持的内核,Gram矩阵通常是稀疏的。可以使用Givens旋转有效地维护和更新Gram矩阵的稀疏Cholesky因子。这导致了一种精确的在线算法,其更新时间与Gram矩阵的大小成线性比例。此外,我们提供了使用矩阵降级数据对OSMGP进行恒定时间操作的方法。降级日期通过删除与丢弃的训练示例相对应的某些行和列,将Cholesky因子维持在恒定大小。我们证明,使用这些矩阵降时,可以在总训练示例数中以线性成本包含在线超参数估计。我们描述了基于OSMGP的健壮的基于外观的头部姿势估计系统。使用大型数据集系统进行的大量实验和与现有方法的比较证明了我们系统的效率和准确性。此外,为了展示OSMGP在各种问题上的适用性,我们还描述了一种基于回归的视觉跟踪方法。实验表明,我们的OSMGP算法可以很好地利用在线学习进行概括。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号