首页> 外文期刊>Image Processing, IEEE Transactions on >Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods
【24h】

Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods

机译:使用GCV和基于SURE的方法进行非线性迭代图像复原和MRI重建的正则化参数选择

获取原文
获取原文并翻译 | 示例

摘要

Regularized iterative reconstruction algorithms for imaging inverse problems require selection of appropriate regularization parameter values. We focus on the challenging problem of tuning regularization parameters for nonlinear algorithms for the case of additive (possibly complex) Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE) approaches [based on Stein's unbiased risk estimate (SURE)] need the Jacobian matrix of the nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast variant of the standard iterative reweighted least-squares method and the contemporary split-Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-type regularizers. The proposed approach iteratively computes two weighted SURE-type measures: predicted-SURE and projected-SURE (which require knowledge of noise variance $sigma^{2}$), and GCV (which does not need $sigma^{2}$) for these algorithms. We apply the methods to image restoration and to magnetic resonance image (MRI) reconstruction using total variation and an analysis-type $ell_{1}$-regularization. We demonstrate through simulations and experiments with real data that minimizing predicted-SURE and projected-SURE consistently lead to near-MSE-optimal reconstructions. We also observe that minimizing GCV yields reconstruction results that are near-MSE-optimal for image restoration and slightly suboptimal for MRI. Theoretical derivations in this paper related to Jacobian matrix evaluations can be extended, in principle, to other types of regularizers and reconstruction algorithms.
机译:用于成像反问题的正则迭代重建算法需要选择适当的正则参数值。对于加性(可能是复杂的)高斯噪声的情况,我们关注针对非线性算法调整正则化参数的挑战性问题。广义交叉验证(GCV)和(加权)均方误差(MSE)方法[基于Stein的无偏风险估计(SURE)]需要非线性重构算子(表示迭代算法)的Jacobian矩阵。数据。我们为两种类型的非线性迭代算法得出所需的Jacobian矩阵:标准迭代加权最小二乘法的快速变体和当代的斯普利特-布雷格曼算法,这两种算法都可以适应多种分析和合成类型的正则化器。所提出的方法迭代地计算了两个加权SURE类型的度量:预测SURE和投影SURE(需要了解噪声方差$ sigma ^ {2} $)和GCV(不需要$ sigma ^ {2} $)这些算法。我们将这些方法应用于图像恢复和使用总变化量和分析类型的$ ell_ {1} $-正则化的磁共振图像(MRI)重建。我们通过使用真实数据进行的仿真和实验证明,将预测的SURE和预测的SURE最小化可始终导致近MSE最优重构。我们还观察到,最小化GCV产生的重建结果对于图像恢复而言接近MSE最佳,而对于MRI而言则稍差于最优。本文中与雅可比矩阵评估有关的理论推导原则上可以扩展到其他类型的正则器和重构算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号