首页> 外文期刊>Image Processing, IEEE Transactions on >Posterior-Mean Super-Resolution With a Causal Gaussian Markov Random Field Prior
【24h】

Posterior-Mean Super-Resolution With a Causal Gaussian Markov Random Field Prior

机译:具有因果高斯马尔可夫随机场先验的后均值超分辨率

获取原文
获取原文并翻译 | 示例

摘要

We propose a Bayesian image super-resolution (SR) method with a causal Gaussian Markov random field (MRF) prior. SR is a technique to estimate a spatially high-resolution image from given multiple low-resolution images. An MRF model with the line process supplies a preferable prior for natural images with edges. We improve the existing image transformation model, the compound MRF model, and its hyperparameter prior model. We also derive the optimal estimator—not the joint maximum a posteriori (MAP) or the marginalized maximum likelihood (ML) but the posterior mean (PM)—from the objective function of the L2-norm-based (mean square error) peak signal-to-noise ratio. Point estimates such as MAP and ML are generally not stable in ill-posed high-dimensional problems because of overfitting, whereas PM is a stable estimator because all the parameters in the model are evaluated as distributions. The estimator is numerically determined by using the variational Bayesian method. The variational Bayesian method is a widely used method that approximately determines a complicated posterior distribution, but it is generally hard to use because it needs the conjugate prior. We solve this problem with simple Taylor approximations. Experimental results have shown that the proposed method is more accurate or comparable to existing methods.
机译:我们提出一种具有因果高斯马尔可夫随机场(MRF)的贝叶斯图像超分辨率(SR)方法。 SR是一种从给定的多个低分辨率图像中估计空间高分辨率图像的技术。具有线条处理的MRF模型为具有边缘的自然图像提供了更好的先验。我们改进了现有的图像转换模型,复合MRF模型及其超参数先验模型。我们还从基于L2范数(均方误差)峰值信号的目标函数中得出最佳估计量,而不是联合最大后验(MAP)或边际最大似然(ML),而是后验均值(PM)。噪声比。由于过拟合,诸如MAP和ML之类的点估计在不适定的高维问题中通常不稳定,而PM是稳定的估计器,因为模型中的所有参数均作为分布进行评估。通过使用变分贝叶斯方法在数值上确定估计量。变分贝叶斯方法是一种广泛使用的方法,可以近似地确定复杂的后验分布,但是由于它需要先验共轭,因此通常很难使用。我们用简单的泰勒近似来解决这个问题。实验结果表明,所提出的方法更准确或更可比现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号