首页> 外文期刊>Signal Processing Letters, IEEE >Video Super-Resolution Using Generalized Gaussian Markov Random Fields
【24h】

Video Super-Resolution Using Generalized Gaussian Markov Random Fields

机译:广义高斯马尔可夫随机场的视频超分辨率

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we present the first application of the Generalized Gaussian Markov Random Field (GGMRF) to the problem of video super-resolution. The GGMRF prior is employed to perform a maximum a posteriori (MAP) estimation of the desired high-resolution image. Compared with traditional prior models, the GGMRF can describe the distribution of the high-resolution image much better and can also preserve better the discontinuities (edges) of the original image. Previous work that used GGMRF for image restoration in which the temporal dependencies among video frames has not considered. Since the corresponding energy function is convex, gradient descent optimization techniques are used to solve the MAP estimation. Results show the super-resolved images using the GGMRF prior not only offers a good enhancement of visual quality, but also contain a significantly smaller amount of noise.
机译:在这封信中,我们介绍了广义高斯马尔可夫随机场(GGMRF)在视频超分辨率问题上的首次应用。使用GGMRF先验来执行所需高分辨率图像的最大后验(MAP)估计。与传统的先前模型相比,GGMRF可以更好地描述高分辨率图像的分布,并且还可以更好地保留原始图像的不连续性(边缘)。使用GGMRF进行图像恢复的先前工作没有考虑视频帧之间的时间依赖性。由于相应的能量函数是凸的,因此使用梯度下降优化技术来求解MAP估计。结果表明,使用GGMRF之前的超分辨图像不仅可以提供良好的视觉质量,而且还包含明显更少的噪点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号