首页> 外文期刊>Image Processing, IEEE Transactions on >Iterative Narrowband-Based Graph Cuts Optimization for Geodesic Active Contours With Region Forces (GACWRF)
【24h】

Iterative Narrowband-Based Graph Cuts Optimization for Geodesic Active Contours With Region Forces (GACWRF)

机译:带有区域力的大地测活动轮廓的基于迭代的基于窄带的图割优化(GACWRF)

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an iterative narrow-band-based graph cuts (INBBGC) method is proposed to optimize the geodesic active contours with region forces (GACWRF) model for interactive object segmentation. Based on cut metric on graphs proposed by Boykov and Kolmogorov, an NBBGC method is devised to compute the local minimization of GAC. An extension to an iterative manner, namely, INBBGC, is developed for less sensitivity to the initial curve. The INBBGC method is similar to graph-cuts-based active contour (GCBAC) presented by Xu , and their differences have been analyzed and discussed. We then integrate the region force into GAC. An improved INBBGC (IINBBGC) method is proposed to optimize the GACWRF model, thus can effectively deal with the concave region and complicated real-world images segmentation. Two region force models such as mean and probability models are studied. Therefore, the GCBAC method can be regarded as the special case of our proposed IINBBGC method without region force. Our proposed algorithm has been also analyzed to be similar to the Grabcut method when the Gaussian mixture model region force is adopted, and the band region is extended to the whole image. Thus, our proposed IINBBGC method can be regarded as narrow-band-based Grabcut method or GCBAC with region force method. We apply our proposed IINBBGC algorithm on synthetic and real-world images to emphasize its performance, compared with other segmentation methods, such as GCBAC and Grabcut methods.
机译:本文提出了一种基于迭代窄带的图割(INBBGC)方法,利用区域力(GACWRF)模型来优化测地线活动轮廓,以进行交互式对象分割。基于Boykov和Kolmogorov提出的图上的割度量,设计了一种NBBGC方法来计算GAC的局部最小化。为了减少对初始曲线的敏感性,开发了一种迭代方式的扩展,即INBBGC。 INBBGC方法类似于Xu提出的基于图形切割的活动轮廓线(GCBAC),并对其差异进行了分析和讨论。然后,我们将区域力量整合到GAC中。提出了一种改进的INBBGC(IINBBGC)方法来优化GACWRF模型,从而可以有效地处理凹面区域和复杂的现实世界图像分割。研究了两个区域力模型,例如均值模型和概率模型。因此,GCBAC方法可以看作是我们提出的IINBBGC方法的特例,没有区域力。在采用高斯混合模型区域力并将带区域扩展到整个图像时,我们提出的算法也被分析为类似于Grabcut方法。因此,我们提出的IINBBGC方法可以被认为是基于窄带的Grabcut方法或具有区域力方法的GCBAC。与其他分割方法(例如GCBAC和Grabcut方法)相比,我们将拟议的IINBBGC算法应用于合成和真实世界的图像以强调其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号