首页> 外文期刊>IEEE Transactions on Image Processing >Efficient Minimum Error Bounded Particle Resampling L1 Tracker With Occlusion Detection
【24h】

Efficient Minimum Error Bounded Particle Resampling L1 Tracker With Occlusion Detection

机译:具有遮挡检测的高效最小误差有界粒子重采样L1跟踪器

获取原文
获取原文并翻译 | 示例

摘要

Recently, sparse representation has been applied to visual tracking to find the target with the minimum reconstruction error from a target template subspace. Though effective, these L1 trackers require high computational costs due to numerous calculations for $ell_{1}$ minimization. In addition, the inherent occlusion insensitivity of the $ell_{1}$ minimization has not been fully characterized. In this paper, we propose an efficient L1 tracker, named bounded particle resampling (BPR)-L1 tracker, with a minimum error bound and occlusion detection. First, the minimum error bound is calculated from a linear least squares equation and serves as a guide for particle resampling in a particle filter (PF) framework. Most of the insignificant samples are removed before solving the computationally expensive $ell_{1}$ minimization in a two-step testing. The first step, named $tau$ testing, compares the sample observation likelihood to an ordered set of thresholds to remove insignificant samples without loss of resampling precision. The second step, named max testing, identifies the largest sample probability relative to the target to further remove insignificant samples without altering the tracking result of the current frame. Though sacrificing minimal precision during resampling, max testing achieves significant speed up on top of $tau$ testing. The BPR-L1 technique can also be beneficial to other trackers that have minimum error bounds in a PF framework, especially for trackers based on sparse representations. After the error-bound calculation, BPR-L1 performs occlusion detection by investigating the trivial coefficients in the $ell_{1}$ minimization. These coefficients, by design, contain rich information about image corruptions, including occlusion. Detected occlusions are then used to enhance the template updating. For evaluation, we conduct experiments on three video applications: biometrics (head movement, hand holding object, singers on stage), pedestrians (urban travel, hallway monitoring), and cars in traffic (wide area motion imagery, ground-mounted perspectives). The proposed BPR-L1 method demonstrates an excellent performance as compared with nine state-of-the-art trackers on eleven challenging benchmark sequences.
机译:最近,稀疏表示已应用于视觉跟踪,以从目标模板子空间中找到具有最小重构误差的目标。这些L1跟踪器虽然有效,但由于对 $ ell_ {1} $ 最小化的大量计算而需要很高的计算成本。此外, $ ell_ {1} $ 最小化的固有遮挡不敏感度尚未得到充分表征。在本文中,我们提出了一种有效的L1跟踪器,命名为有界粒子重采样(BPR)-L1跟踪器,具有最小的误差范围和遮挡检测。首先,根据线性最小二乘方程计算最小误差范围,并将其用作在粒子滤波器(PF)框架中进行粒子重采样的指南。在通过两步测试解决最小化计算量大的 $ ell_ {1} $ 最小化之前,将大多数无关紧要的样本删除。第一步,称为 $ tau $ 测试,将样本观察可能性与一组有序阈值进行比较,以去除无意义的样本重采样精度下降。第二步,称为最大测试,确定相对于目标的最大样本概率,以在不更改当前帧的跟踪结果的情况下进一步删除不重要的样本。尽管在重采样期间牺牲了最小精度,但是最大测试在 $ tau $ 测试之上实现了显着的速度提升。 BPR-L1技术也可能有益于在PF框架中具有最小误差范围的其他跟踪器,尤其是对于基于稀疏表示的跟踪器。经过误差限制计算后,BPR-L1通过研究<公式-latype =“ inline”> $ ell_ {1} $ 中的琐碎系数来执行遮挡检测。公式>最小化。根据设计,这些系数包含有关图像损坏(包括遮挡)的丰富信息。然后使用检测到的遮挡来增强模板更新。为了进行评估,我们在三个视频应用程序上进行了实验:生物识别(头部移动,手持物体,舞台上的歌手),行人(城市出行,走廊监控)和行车中的车辆(广域运动图像,地面透视图)。与在11个具有挑战性的基准序列上使用9个最新跟踪器相比,所建议的BPR-L1方法具有出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号