首页> 外文期刊>Image Processing, IEEE Transactions on >DEB: Definite Error Bounded Tangent Estimator for Digital Curves
【24h】

DEB: Definite Error Bounded Tangent Estimator for Digital Curves

机译:DEB:数字曲线的确定误差有界切线估计器

获取原文
获取原文并翻译 | 示例

摘要

We propose a simple and fast method for tangent estimation of digital curves. This geometric-based method uses a small local region for tangent estimation and has a definite upper bound error for continuous as well as digital conics, i.e., circles, ellipses, parabolas, and hyperbolas. Explicit expressions of the upper bounds for continuous and digitized curves are derived, which can also be applied to nonconic curves. Our approach is benchmarked against 72 contemporary tangent estimation methods and demonstrates good performance for conic, nonconic, and noisy curves. In addition, we demonstrate a good multigrid and isotropic performance and low computational complexity of (O(1)) and better performance than most methods in terms of maximum and average errors in tangent computation for a large variety of digital curves.
机译:我们提出了一种简单快速的数字曲线切线估计方法。这种基于几何的方法使用较小的局部区域进行切线估计,并且对于连续圆锥形和数字圆锥形(即圆,椭圆,抛物线和双曲线)具有确定的上限误差。导出了连续曲线和数字化曲线的上限的显式表达式,也可以将其应用于非圆锥曲线。我们的方法以72种当代正切估计方法为基准,并且证明了圆锥曲线,非圆锥曲线和嘈杂曲线的良好性能。此外,我们展示了良好的多网格和各向同性性能,并且 (O(1)) 和在各种数字曲线的切线计算的最大和平均误差方面,其性能优于大多数方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号